Application of piezoelectric composites to control operation of a gas foil bearing – prototype design and testing

Authors

  • A Martowicz
  • P Zdziebko
  • J Roemer
  • G Żywica
  • P Bagiński
  • A Andrearczyk

DOI:

https://doi.org/10.21152/1750-9548.16.4.425

Abstract

Essential parts of rotating machineries are supporting nodes, i.e., bearing systems. They assure required rotational degrees of freedom and feature desired load carrying capacity. Following the specificity of a technical solution considered, various types of bearings may be taken into account to effectively address the requirements regarding the speed and load. Specifically, gas foil bearings (GFB) are used in high-speed and lightly-loaded rotating machineries, e.g., auxiliary power units. In fact, they can operate up to several hundreds of thousands rpm, also for a wide temperature range. The current work reports an application of piezoelectric composites to control operation of a GFB. The authors present the developed bearing’s prototype installation which is equipped with a specialized multifunctional structural component that advantageously allows to both characterize GFB’s operational parameters and modify them. The experimental results confirm the usability of the proposed actively-controlled configuration of a GFB.

References

Mcauliffe, C. and Dziorny, P.J., Bearing cooling arrangement for air cycle machine. U.S. Patent 5113670, 19 May 1992.

DellaCorte, C. and Bruckner, R.J., Remaining technical challenges and future plans for oil-free turbomachinery. ASME Journal of Engineering for Gas Turbines and Power, 2011, 133, 042502. https://doi.org/10.1115/1.4002271

Samanta, P., Murmu, N.C. and Khonsari, M.M., The evolution of foil bearing technology. Tribology International, 2019, 135, 305–323. https://doi.org/10.1016/j.triboint.2019.03.021

Gu, Y., Ren, G. and Zhou, M., A fully coupled elastohydrodynamic model for static performance analysis of gas foil bearings. Tribology International, 2020, 147, 106297. DOI: dx.doi.org/10.1016/j.triboint.2020.106297

Martowicz, A., Zdziebko, P., Roemer, J., Zywica, G., and Baginski, P., Thermal characterization of a gas foil bearing - a novel method of experimental identification of the temperature field based on integrated thermocouples measurements, Sensors, 2022, 22, 5718. DOI: https://doi.org/10.3390/s22155718

Martowicz, A., Roemer, J., Kantor, S., Zdziebko, P., Zywica, G., and Baginski, P., Gas foil bearing technology enhanced with smart materials, Applied Sciences, 2021, 11, 2757. DOI: https://doi.org/10.3390/app11062757

Radil, K. and Batcho, Z., A novel thermal management approach for radial foil air bearings, USA Laboratory Report; No. ARL-MR-0749; US Army Research - Defense Technical Information Center: Fort Belvoir, VA, USA, 2010.

San Andres, L., Ryu, K. and Kim, T.H., Thermal management and rotordynamic performance of a hot rotor-gas foil bearings system - Part I: Measurements. ASME Journal of Engineering for Gas Turbines and Power, 2011, 133, 062501. DOI: dx.doi.org/10.1115/1.4001826

San Andres, L., Ryu, K. and Kim, T.H., Thermal management and rotordynamic performance of a hot rotor-gas foil bearings system - Part II: Predictions versus test data. ASME Journal of Engineering for Gas Turbines and Power, 2011, 133, 062502. DOI: dx.doi.org/10.1115/1.4001827

Feng, K., Cao, Y., Yu, K., Guan, H.-Q., Wu, Y. and Guo, Z., Characterization of a controllable stiffness foil bearing with shape memory alloy springs. Tribology International 2019, 136, 360–371. DOI: https://doi.org/10.1016/j.triboint.2019.03.068

Nielsen, B.B., Combining gas bearing and smart material technologies for improved machine performance theory and experiment. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2017; No. S221.

Nielsen, B.B., Nielsen, M.S. and Santos, I.F., A layered shell containing patches of piezoelectric fibers and interdigitated electrodes: Finite element modeling and experimental validation. Journal of Intelligent Material Systems and Structures, 2016, 28, 78–96. DOI: https://doi.org/10.1177/1045389X16642537

Sadri, H., Kyriazis, A., Schlums, H. and Sinapius, M., On modeling the static shape control of an adaptive air foil bearing. Smart Materials and Structures, 2020, 29, 085043. https://doi.org/10.1088/1361-665X/ab99d7

Ghalayini, I. and Bonello, P., Nonlinear and linearised analyses of a generic rotor on single-pad foil-air bearings using Galerkin Reduction with different applied air film conditions. Journal of Sound and Vibration, 2022, 525, 116774. DOI: https://doi.org/10.1016/j.jsv.2022.116774

Feng, K., Guan, H.-Q., Zhao, Z.-L. and Liu, T.-Y., Active bump-type foil bearing with controllable mechanical preloads. Tribology International, 2018, 120, 187–202. DOOI: https://doi.org/10.1016/j.triboint.2017.12.029

Guan, H.Q., Feng, K., Yu, K., Cao, Y.L. and Wu, Y.H. Nonlinear dynamic responses of a rigid rotor supported by active bump-type foil bearings. Nonlinear Dynamics, 2020, 100, 2241–2264. DOI: https://doi.org/10.1007/s11071-020-05608-4

Guan, H.Q., Feng, K., Cao, Y.L., Huang, M., Wu, Y.H. and Guo, Z.Y., Experimental and theoretical investigation of rotordynamic characteristics of a rigid rotor supported by an active bump-type foil bearing. Journal of Sound and Vibration, 2020, 466, 115049. DOI: https://doi.org/10.1016/j.jsv.2019.115049

Polyakov, R., Bondarenko, M. and Savin, L., Hybrid bearing with actively adjustable radial gap of gas foil bearing. Procedia Engineering, 2015, 106, 132–140. DOI: https://doi.org/10.1016/j.proeng.2015.06.016

Wang, E., Gardner, N., Gupta, S. and Shukla, A., Fluid-structure interaction and its effect on the performance of composite structures under air-blast loading. The International Journal of Multiphysics, 2012, 6(3), 219-240. DOI: https://doi.org/10.1260/1750-9548.6.3.219.

Kwon, Y., Owens, A. and Kwon, A., Experimental Study of Impact on Composite Plates with Fluid-Structure Interaction. The International Journal of Multiphysics, 2010, 4(3), 259-271. DOI: https://doi.org/10.1260/1750-9548.4.3.259.

Andleeb, Z., Malik, S., Khawaja, H., Antonsen, S., Hassan, T., Hussain, G. and Moatamedi, M., Strain Wave Analysis in Carbon-Fiber-Reinforced Composites subjected to Drop Weight Impact Test using ANSYS®. The International Journal of Multiphysics, 2021, 15(3), 275-290. DOI: https://doi.org/10.21152/1750-9548.15.3.275.

Afzali, M. and Rostamiyan, Y., Study the damping and vibrational properties of polycarbonate reinforced ZrO2. The International Journal of Multiphysics, 2022, 16(1), 31-52. DOI: https://doi.org/10.21152/1750-9548.16.1.31.

Mezdour, D., Sahli, S. and Tabellout, M., Study of the electrical conductivity in fiber composites. The International Journal of Multiphysics, 2010, 4(2), 141-150. DOI: https://doi.org/10.1260/1750-9548.4.2.141.

Roemer, J., Zdziebko, P. and Martowicz, A., Multifunctional bushing for gas foil bearing - test rig architecture and functionalities. The International Journal of Multiphysics, 2021, 15(1), 73-86. DOI: https://doi.org/10.21152/1750-9548.15.1.73

Smart Material Corporation, https://www.smart-material.com/MFC-product-P1V2.html

Acciani, G., Dimucci, A. and Lorusso, L., Multimodal piezoelectric devices optimization for energy harvesting. The International Journal of Multiphysics, 2013, 7(3), 227-244. https://doi.org/10.1260/1750-9548.7.3.227

Martowicz, A., Rosiek, M., Manka, M. and Uhl, T., Design Process of IDT Aided by Multiphysics FE Analyses. The International Journal of Multiphysics, 2012, 6(2), 129-148. https://doi.org/10.1260/1750-9548.6.2.129

Published

2022-12-12

How to Cite

Martowicz, A., Zdziebko, P., Roemer, J., Żywica, G., Bagiński, P., & Andrearczyk, A. (2022). Application of piezoelectric composites to control operation of a gas foil bearing – prototype design and testing. The International Journal of Multiphysics, 16(4), 425-435. https://doi.org/10.21152/1750-9548.16.4.425

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>