Euler-Lagrangian Model of Particle Motion and Deposition Effects in Electro-Static Fields based on OpenFoam
DOI:
https://doi.org/10.21152/1750-9548.10.2.177Abstract
In order to study the powder coating process of metal substrates, a comprehensive, numerical 3D Eulerian-LaGrangian model, featuring two particle sub-models, has been developed. The model considers the effects of electro-static, fluid-dynamic and gravity forces. The code has been implemented in C++ within the open source CFD platform OpenFoam®, is transient in nature with respect to the applied LaGrangian particle implementation and the electro-static field calculation and is stationary regarding fluid-dynamic phenomena. Qualitative validation of the developed solver has already been achieved by comparison to simple coating experiments and will hereby be presented alongside a thorough description of the model itself. Upon combining knowledge of the relevant dimensionless groups and the numerical model, a dimensionless chart, representing all possible states of coating, was populated with comprehensive, exemplary cases, which are shown here as well.
References
G. Boiger, (2016). Characterization of particle laden flows and deposition behaviour in electro-static fields, Int. Journal of Multiphysics, accepted.
K. Pulli, (2006). Optimierung der Pulverlackapplikation durch Anwendung experimenteller und numerischer Untersuchungsverfahren. PhD thesis. University of Stuttgart, Stuttgart, Germany, ISBN: 3-936947-96-1, URN: ngn:de:bsz:93-opus-28054, 2006.
Q. Ye, T. Steigleder, A. Scheibe, J. Domnick, (2001). Numerical Simulation of the electro-static powder coating process with a corona spray gun, Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, Germany, Journal of Electrostatics, Vol.54, 2002, pp. 189-205. https://doi.org/10.1016/s0304-3886(01)00181-4
C.U. Böttner, M. Sommerfeld (2002). Numerical calculation of electrostatic powder painting using the Euler/Lagrange approach, Institute of Process Engineering, Martin-Luther Universität Halle-Wittenberg, Halle an der Saale, Germany, Powder Technology; Vol.125, 2002, pp. 206-216. https://doi.org/10.1016/s0032-5910(01)00508-3
U. Shah, J. Zhu, C. Zhang, J.H. Nother Senior (2002). Numerical investigation of coarse powder and air flow in an electrostatic powder coating process, University of Western Ontario, London-Ontario, Canada, Powder Technology; Vol.164, 2006, pp. 22-32. https://doi.org/10.1016/j.powtec.2006.02.002
A.G. Bailey, (1998). The science and technology of electrostatic powder spraying, transport and coating, University of Southampton, Southampton, UK, Journal of Electrostatics; Vol.45, (1998), pp. 85-120. https://doi.org/10.1016/s0304-3886(98)00049-7
P. Plascar, (2003). Untersuchungen zur Wechselwirkung zwischen Strömungsmechanik und Elektrostatik bei der Neuentwicklung von Flachstrahldüsen zur Verbesserung des Auftragswirkungsgrades im Pulverbeschichtungsprozess. Diploma thesis. Fachhochschule Esslingen a.N. Hochschule für Technik, Esslingen, Germany, 2003.
G. Boiger, M. Mataln, W. Brandstätter, (2009). Adaptive time stepping for explicit Euler implementation of spherical and non-spherical particle speed up. ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int.Journal of Multiphysics; Vol.3, No.3, August 2009 , pp. 267–291(25). https://doi.org/10.1260/175095409788922301
H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in Physics, Vol. 12, No. 6, Nov/Dec 1998. https://doi.org/10.1063/1.168744
F. R. Menter (1994). Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, Vol. 32, No. 8, August 1994, pp. 1598-1605. https://doi.org/10.2514/3.12149
O. Penttinen, (2011). A pimpleFoam tutorial for channel flow with respect to different LES models. Chalmers University of Technology, Goteborg, Sweden. Peer reviewed tutorial, Hakan Nilsson, CFD with OpenSource Software; November 2011.
D. Rubinetti, D.A. Weiss, W. Egli, (2015). Electrostatic Precipitators – Modelling and Analytical Verification Concept, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland, COMSOL CONFERENCE 2015, Grenoble, 14-16 October.
G. Boiger, M. Mataln, W. Brandstätter, B. Gschaider, (2008). Simulation of Particle Filtration Processes in Deformable Media, Part 2: Large Particle Modelling, ICE Stroemungsforschung GmbH., University of Leoben. Int.Journal of Multiphysics, Vol.2, (No.2), July 2008, pp. 191-206(16)8. https://doi.org/10.1260/175095408785416938
G. Boiger, M. Mataln, W. Brandstätter, (2009). Simulation of Particle Filtration Processes in Deformable Media, Part 3.1: Basic concepts and particle-fluid force implementation of a non- spherical dirt particle solver, ICE Stroemungsforschung GmbH., University of Leoben. Int.Journal of Multiphysics, Vol.3, (No.4), March 2010, pp. 407–232(26). https://doi.org/10.1260/1750-9548.3.4.407
G. Boiger, M. Mataln, W. Brandstätter, (2009). Simulation of Particle Filtration Processes in Deformable Media, Part 3.2: Interaction modelling and solver verification of a non-spherical dirt particle solver, ICE Stroemungsforschung GmbH., University of Leoben. Int.Journal of Multiphysics, Vol.3,(No.4), March 2010 , pp. 433-454(22). https://doi.org/10.1260/1750-9548.3.4.433
A. Vallier, (2010). Tutorial icoLagrangianFoam / solidParticle. Lund Tekniska Högskola, Lund, Sweden. Peer reviewed tutorial, Hakan Nilsson, CFD with OpenSource Software; January 2010.
A. Bariska, N. Reinke, (2011). Berührungslose thermische Schichtprüfung. School of Engineering, Zurich University of Applied Sciences (ZHAW), Winterthur, Switzerland. Swiss Engineering STZ, 57.16, 2011.
Published
How to Cite
Issue
Section
Copyright (c) 2016 G Boiger

This work is licensed under a Creative Commons Attribution 4.0 International License.