Dynamic analysis of cylindrical shells subject to multiple blasts using FSI

Authors

  • N Mehreganian
  • G Boiger
  • M Moatamedi
  • A S Fallah Oslo Metropolitan University

DOI:

https://doi.org/10.21152/1750-9548.15.4.453

Abstract

Localised pressure pulse loads can pose a significant threat to structural elements and critical equipment and may cause failure and damage in the target due to the concentrated energy delivered upon a localised area of the target. The impulse impinged upon the local area at the contact interface can exceed 80% of the total impulse that the charge can deliver upon the infinite target, leading to potential perforation of the structural element. When multiple charges are detonated, the advection of gaseous products depends, among other parameters such as fluid density, on the type of blast wave interference and superposition.

This work examines the influence of multiple charge detonations blasted in the air on the external surface of cylindrical shells. Two types of detonations were considered, viz. simultaneous and sequential. In both cases the charges were positioned at 50mm and 75mm stand-off to the right and left of the shell. The Fluid-Structure Interaction (FSI) phenomenon was investigated in each scenario. The pressure registered with the gauge points of the rigid target was implemented in an uncoupled study on a flexible target which demonstrated different mode shapes occurring in the shell due to each blast scenario.

A dimensionless impulse parameter was defined based on the Gaussian distribution function associated with the load shape, which renders the probability of the impulse as the total impulse that can potentially be imparted to the target.

References

N. Kambouchev, R. Radovitzky, and L. Noels, “Fluid–Structure Interaction Effects in the Dynamic Response of Free-Standing Plates to Uniform Shock Loading,” J. Appl. Mech., vol. 74, no. 5, p. 1042, 2007, doi: https://doi.org/10.1115/1.2712230

N. Kambouchev, L. Noels, and R. Radovitzky, “Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures,” J. Appl. Phys., vol. 100, no. 6, pp. 063519 1–11, 2006, doi: https://doi.org/10.1063/1.2349483

G. I. Taylor, “The pressure and Impulse of Submarine Explosion Waves on Plates,” in The scientific papers of Sir Geoffrey Ingram Taylor: Vol 3 Aerodynamics and the Mechanics of Projectiles and Explosions, vol. III, no. 4, G. K. . Batchelor, C. F. . Sharman, J. W. . Maccoll, R. M. . Davies, H. ; Jones, and P. G. . Saffman, Eds. Cambridge, UK: Cambridge University Press, 2011, p. 590.

DOD., Unified Facilities Criteria (UFC): Structures to Resist the Effects of Accidental Explosions (UFC 3-340-02), no. December. Washington DC.: Department of Defence, 2008.

A. Neuberger, S. Peles, and D. Rittel, “Springback of circular clamped armor steel plates subjected to spherical air-blast loading,” Int. J. Impact Eng., vol. 36, no. 1, pp. 53–60, 2009, doi: https://doi.org/10.1016/j.ijimpeng.2008.04.008

M. D. Olson, G. N. Nurick, and J. R. Fagnan, “Deformation and rupture of blast loaded square plates—predictions and experiments,” Int. J. Impact Eng., vol. 13, no. 2, pp. 279–291, 1993, doi: https://doi.org/10.1016/0734-743X(93)90097-Q

G. LeBlanc, M. Adoum, and V. Lapoujade, “External blast load on structures – Empirical approach,” 5th Eur. LS-DYNA Users Conf., no. 2, 2005.

I. Sochet, D. Gardebas, S. Calderara, Y. Marchal, and B. Longuet, “Blast Wave Parameters for Spherical Explosives Detonation in Free Air,” Open J. Saf. Sci. Technol., vol. 01, no. 02, pp. 31–42, 2011, doi: https://doi.org/10.4236/ojsst.2011.12004

G. S. Langdon, S. C. K. Yuen, and G. N. Nurick, “Experimental and numerical studies on the response of quadrangular stiffened plates. Part II: Localised blast loading,” Int. J. Impact Eng., vol. 31, no. 1, pp. 85–111, 2005, doi: https://doi.org/10.1016/j.ijimpeng.2003.09.050

S. C. K. Yuen and G. N. Nurick, “Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: Subjected to uniform blast load,” Int. J. Impact Eng., vol. 31, no. 1, pp. 55–83, 2005, doi: https://doi.org/10.1016/j.ijimpeng.2003.09.048

S. C. K. Yuen and G. N. Nurick, “Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: Subjected to uniform blast load,” Int. J. Impact Eng., vol. 31, no. 1, pp. 55–83, 2005, doi: https://doi.org/10.1016/j.ijimpeng.2003.09.048

V. Aune, E. Fagerholt, K. O. Hauge, M. Langseth, and T. Børvik, “Experimental study on the response of thin aluminium and steel plates subjected to airblast loading,” Int. J. Impact Eng., vol. 90, pp. 106–121, 2016, doi: https://doi.org/10.1016/j.ijimpeng.2015.11.017

T. Børvik, O. S. Hopperstad, and T. Berstad, “On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. Numerical study,” Eur. J. Mech. A/Solids, vol. 22, no. 1, pp. 15–32, 2003, doi: https://doi.org/10.1016/S0997-7538(02)00005-0

N. Mehreganian, L. A. Louca, G. S. Langdon, R. J. Curry, and N. Abdul-Karim, “The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques,” Int. J. Impact Eng., vol. 115, no. January, pp. 81–93, 2018, doi: https://doi.org/10.1016/j.ijimpeng.2018.01.010

V. Aune, G. Valsamos, F. Casadei, M. Larcher, M. Langseth, and T. Børvik, “Numerical study on the structural response of blast-loaded thin aluminium and steel plates,” Int. J. Impact Eng., vol. 99, pp. 131–144, 2017, doi: https://doi.org/10.1016/j.ijimpeng.2016.08.010

T. Børvik, A. G. Hanssen, M. Langseth, and L. Olovsson, “Response of structures to planar blast loads - A finite element engineering approach,” Comput. Struct., vol. 87, no. 9–10, pp. 507–520, 2009, doi: https://doi.org/10.1016/j.compstruc.2009.02.005

K. Micallef, A. S. Fallah, P. T. Curtis, and L. A. Louca, “On the dynamic plastic response of steel membranes subjected to localised blast loading,” Int. J. Impact Eng., vol. 89, pp. 25–37, 2016, doi: https://doi.org/10.1016/j.ijimpeng.2015.11.002

N. Mehreganian, M. Toolabi, Y. A. Zhuk, F. Etminan Moghadam, L. A. Louca, and A. S. Fallah, “Dynamics of pulse-loaded circular Föppl-von Kármán thin plates- Analytical and numerical studies,” J. Sound Vib., vol. 513, p. 116413, 2021, doi: https://doi.org/10.1016/j.jsv.2021.116413

N. Mehreganian, A. S. Fallah, and L. A. Louca, “Plastic dynamic response of simply supported thick square plates subject to localised blast loading,” Int. J. Impact Eng., vol. 126, no. December 2018, pp. 85–100, 2019, doi: https://doi.org/10.1016/j.ijimpeng.2018.12.010

N. Jones, “Dynamic inelastic response of strain rate sensitive ductile plates due to large impact, dynamic pressure and explosive loadings,” Int. J. Impact Eng., vol. 74, pp. 3–15, 2014, doi: https://doi.org/10.1016/j.ijimpeng.2013.05.003

N. Jones, Structural Impact. Cambridge: Cambridge University Press, 1989.

Q. M. Li and H. Meng, “Pressure-impulse diagram for blast loads based on dimensional analysis and single-degree-of-freedom model,” J. Eng. Mech., vol. 128, no. 1, pp. 87–92, 2002, doi: Doi: https://doi.org/10.1061/(Asce)0733-9399(2002)128:1(87)

A. S. Fallah and L. A. Louca, “Pressure-impulse diagrams for elastic-plastic-hardening and softening single-degree-of-freedom models subjected to blast loading,” Int. J. Impact Eng., vol. 34, no. 4, pp. 823–842, 2007, doi: https://doi.org/10.1016/j.ijimpeng.2006.01.007

N. Mehreganian, A. S Fallah, and L. A. Louca, “Inelastic dynamic response of square membranes subjected to localised blast loading,” Int. J. Mech. Sci., vol. 148, no. November, pp. 578–595, 2018, doi: https://doi.org/10.1016/j.ijmecsci.2018.09.017

N. Mehreganian, A. S. S. Fallah, and L. A. A. Louca, “Dynamic Performance of Simply Supported Rigid-Plastic Square Plates Subject to Localized Blast Loading,” J. Eng. Mech., vol. 140, no. 1, pp. 159–171, 2018, doi: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000645

N. Mehreganian, A. S. S. Fallah, and L. A. A. Louca, “Nonlinear dynamics of locally pulse loaded square Föppl–von Kármán thin plates,” Int. J. Mech. Sci., vol. 163, no. February, 2019, doi: https://doi.org/10.1016/j.ijmecsci.2019.105157.

N. Mehreganian, A. S. S. Fallah, G. K. K. Boiger, and L. A. A. Louca, “Response of Armour Steel Square Plates To Localised Air Blast Load- a Dimensional Analysis,” Int. J. Multiphys., vol. 11, no. 4, pp. 1–20, 2017, doi: https://doi.org/10.21152/1750-9548.11.4.387

N. Mehreganian and A. Soleiman Fallah, “Blast loading effects on aircraft fuselage,” in Multiphysics Simulations in Automotive and Aerospace Applications, 1st ed., M. Moatamedi, T. Rahulan, and H. Khawaja, Eds. London: Elsevier, 2021, p. 301.

N. Jacob, G. N. Nurick, and G. S. Langdon, “The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads,” Eng. Struct., vol. 29, no. 10, pp. 2723–2736, 2007, doi: https://doi.org/10.1016/j.engstruct.2007.01.021

S. C. K. Yuen and G. N. Nurick, “Deformation and Tearing of Uniformly Blast-Loaded Quadrangular Stiffened Plates,” in Structural Engineering, Mechanics and Computation, A. Zingoni, Ed. Oxford: Elsevier Science, 2001, pp. 1029–1036.

G. N. Nurick, S. Mahoi, and G. S. Langdon, “The response of plates subjected to loading arising from the detonation of different shapes of plastic explosive,” Int. J. Impact Eng., vol. 89, no. November, pp. 102–113, 2016, doi: https://doi.org/10.1016/j.ijimpeng.2015.11.012

G. N. Nurick and J. B. Martin, “Deformation of thin plates subjected to impulsive loading—A review,” Int. J. Impact Eng., vol. 8, no. 2, pp. 159–170, Jan. 1989, doi: https://doi.org/10.1016/0734-743X(89)90014-6

B. Zakrisson, “Numerical Simulations of Blast Loaded Steel Plates for Improved Vehicle Protection,” 2013.

W. Zhang, T. Liu, A. Xi, and Y. N. Wang, “Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes,” J. Sound Vib., vol. 423, no. March, pp. 65–99, 2018, doi: https://doi.org/10.1016/j.jsv.2018.02.049

T. Liu, W. Zhang, J. J. Mao, and Y. Zheng, “Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to temperature, rotating speed and external excitations,” Mech. Syst. Signal Process., vol. 127, no. July, pp. 463–498, 2019, doi: https://doi.org/10.1016/j.ymssp.2019.02.061

T. Liu, W. Zhang, and J. . Wang, “Nonlinear dynamics of composite laminated circular cylindrical shell clamped along a generatrix and with membranes at both ends,” Nonlinear Dyn., vol. 90, no. 2, pp. 1393–1417, 2017, doi: https://doi.org/10.1007/s11071-017-3734-4

A. S. Fallah, M. Ghajari, and Y. Safa, “Computational modelling of dynamic delamination in morphing composite blades and wings,” Int. J. Multiphys., vol. 13, no. 4, pp. 393–429, 2019, doi: https://doi.org/10.21152/1750-9548.13.4.393

P. Liu, G. Yu, X. Zhu, and Z. Du, “Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling,” Renew. Energy, vol. 69, no. April, pp. 402–409, 2014, doi: https://doi.org/10.1016/j.renene.2014.03.066

A. Bela, L. Buldgen, P. Rigo, and H. Le Sourne, “Numerical crashworthiness analysis of an offshore wind turbine monopile impacted by a ship,” in Analysis and Design of Marine Structures - Proceedings of the 5th International Conference on Marine Structures, MARSTRUCT 2015, 2015, no. 2013, pp. 661–669, doi: https://doi.org/10.1201/b18179-87

K. Micallef, A. S. Fallah, D. J. Pope, and L. A. Louca, “The dynamic performance of simply-supported rigid-plastic circular steel plates subjected to localised blast loading,” Int. J. Mech. Sci., vol. 65, no. 1, pp. 177–191, 2012, doi: https://doi.org/10.1016/j.ijmecsci.2012.10.001

A. S. Fallah, K. Micallef, G. S. Langdon, W. C. Lee, P. T. Curtis, and L. A. Louca, “Dynamic response of Dyneema® HB26 plates to localised blast loading,” Int. J. Impact Eng., vol. 73, no. October 2016, pp. 91–100, 2014, doi: https://doi.org/10.1016/j.ijimpeng.2014.06.014

R. Rajendran and J. M. Lee, “Blast loaded plates,” Mar. Struct., vol. 22, no. 2, pp. 99–127, 2009, doi: https://doi.org/10.1016/j.marstruc.2008.04.001

N. Mehreganian, L. A. Louca, and A. S. Fallah, “DYNAMIC PERFORMANCE OF SIMPLY-SUPPORTED RIGID-PLASTIC SQUARE PLATES SUBJECT TO LOCALISED BLAST LOADING (In press),” J. Eng. Mech., 2018, doi: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001546

C. K. Youngdahl, “Influence of pulse shape on the final plastic deformation of a circular plate,” Int. J. Solids Struct., vol. 7, no. 9, pp. 1127–1142, 1971, doi: https://doi.org/10.1016/0020-7683(71)90057-6

K. Micallef et al., “On dimensionless loading parameters for close-in blasts,” Int. J. Multiphys., vol. 9, no. 2, p. 193, 2015, doi: https://doi.org/10.1260/1750-9548.9.2.171

D. Bonorchis and G. N. Nurick, “The influence of boundary conditions on the loading of rectangular plates subjected to localised blast loading - Importance in numerical simulations,” Int. J. Impact Eng., vol. 36, no. 1, pp. 40–52, 2009, doi: https://doi.org/10.1016/j.ijimpeng.2008.03.003

B. M. Dobratz, “Properties of Chemical Explosives and Explosive Simulants,” Livermore, 1972. doi: https://doi.org/10.2172/4285272

N. Mehreganian, L. A. Louca, G. S. Langdon, R. J. Curry, and N. Abdul-Karim, “The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques (Submitted for Publication),” Int. J. Impact Eng., 2017.

G. S. Langdon, W. C. Lee, and L. A. Louca, “The influence of material type on the response of plates to air-blast loading,” Int. J. Impact Eng., vol. 78, pp. 150–160, 2015, doi: https://doi.org/10.1016/j.ijimpeng.2014.12.008

Published

2021-12-26

How to Cite

Mehreganian, N., Boiger, G., Moatamedi, M., & S Fallah, A. (2021). Dynamic analysis of cylindrical shells subject to multiple blasts using FSI. The International Journal of Multiphysics, 15(4), 453-476. https://doi.org/10.21152/1750-9548.15.4.453

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 5 > >>