Conjugate Heat Transfer Model Based on SIMPLE and Coupled Energy and Heat Equations

Authors

  • A Leyli
  • Z Andleeb
  • H Khawaja
  • R Messahel
  • R Kanna
  • M Moatamedi

DOI:

https://doi.org/10.21152/1750-9548.15.1.29

Abstract

In this study, a numerical weak coupling strategy for the modeling of a conjugate heat transfer phenomenon is considered. Where the incompressible Navier-Stokes equations are solved using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) as a first step, and then the heat conduction equation for solid is solved in a second step considering the convective velocity field resulting from the first step. A finite-difference approach is used for both discretized time and spatial operators. In this paper, a two-dimensional simulation case study of a steady uniform streamwise flow around heated rectangular and triangle solids is presented. The simulation is forward in time until the steady-state regime is reached as the residuals converge and tend to zero. The spatial analysis of the temperature is obtained through the numerical resolution of the incompressible Navier-Stokes energy equation and the heat diffusion equation for the fluid and solid media, respectively. The results show the temperature, velocity, and pressure fields in the space domain. The code is written in MATLAB®, and the flow chart of the method is provided. It was noted that the convection was more dominant than the diffusion.

References

Ahmad, J.U., et al. Navier_Stokes simulation of air-conditioning facility of a large modern computer room. in Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference. 2005. DOI: https://doi.org/10.1115/fedsm2005-77225

Öztürk, E. and I. Tari. CFD analyses of heat sinks for CPU cooling with fluent. in Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005. 2006. DOI: https://doi.org/10.1115/ht2005-72778

Reddy, J.N. and D.K. Gartling, The finite element method in heat transfer and fluid dynamics. 2010: CRC press. DOI: https://doi.org/10.1201/9781439882573

John, B., S. Paramasivam, and S. Sadasivan, Applied and Theoretical Aspects of Conjugate Heat Transfer Analysis: A Review. Archives of Computational Methods in Engineering, 2018. 26. DOI: https://doi.org/10.1007/s11831-018-9252-9

Pelletier, D., L. Ignat, and F. Ilinca. An adaptive finite element method for conjugate heat transfer. in 33rd Aerospace Sciences Meeting and Exhibit. 1995. DOI: https://doi.org/10.2514/6.1995-637

Rizk, T.A., C. Kleinstreuer, and M.N. Özisik, Analytic solution to the conjugate heat transfer problem of flow past a heated block. International Journal of Heat and Mass Transfer, 1992. 35(6): p. 1519-1525. DOI: https://doi.org/10.1016/0017-9310(92)90041-p

Dimelow, A. Steady and transient Conjugate heat transfer analysis of a turbocharger. in Institution of Mechanical Engineers - 13th International Conference on Turbochargers and Turbocharging. 2018.

Nordli, A. and H. Khawaja, Comparison of Explicit Method of Solution for CFD Euler Problems using MATLAB® and FORTRAN 77. The International Journal of Multiphysics, 2019. 13(2): p. 203-214. DOI: https://doi.org/10.21152/1750-9548.13.2.203

Guerri, O., A. Hamdouni, and A. Sakout, Numerical simulation of the flow around oscillating wind turbine airfoils Part 1: Forced oscillating airfoil. The International Journal of Multiphysics, 2008. 2(4): p. 367-386. DOI: https://doi.org/10.1260/1750-9548.2.4.367

Ramezani, A., G. Stipcich, and I. Garcia, Lecture: Introduction to Computational Fluid Dynamics by the Finite Volume Method. 2016. BCAM–Basque Center for Applied Mathematics.

Khawaja, H.A. and M. Moatamedi, Multiphysics Modelling of Fluid-Particulate Systems, 2020, Academic Press(Elsevier). p. 3-22. DOI: https://doi.org/10.1016/b978-0-12-818345-8.00001-9

Khawaja, H. and M. Moatamedi, 2 - Methodology: computational fluid dynamics-discrete element modeling of fluidized beds, in Multiphysics Modelling of Fluid-Particulate Systems, H. Khawaja and M. Moatamedi, Editors. 2020, Academic Press. p. 23-49. DOI: https://doi.org/10.1016/b978-0-12-818345-8.00002-0

Khawaja, H., Application of a 2-D approximation technique for solving stress analyses problem in FEM. The International Journal of Multiphysics, 2015. 9(4): p. 317-324. DOI: https://doi.org/10.1260/1750-9548.9.4.317

Anderson, J.D., Governing equations of fluid dynamics, in Computational fluid dynamics. 1992, Springer. p. 15-51. DOI: https://doi.org/10.1007/978-3-540-85056-4_2

Khawaja, H., Review of the phenomenon of fluidization and its numerical modelling techniques. The International Journal of Multiphysics, 2015. 9(4): p. 397-408. DOI: https://doi.org/10.1260/1750-9548.9.4.397

Brunner, D., et al., CFD modelling of pressure and shear rate in torsionally vibrating structures using ANSYS CFX and COMSOL Multiphysics. The International Journal of Multiphysics, 2018. 12(4): p. 349-358. DOI: https://doi.org/10.21152/1750-9548.12.4.349

Watanabe, T., Numerical simulation of oscillating flow field including a droplet. The International Journal of Multiphysics, 2013. 7(1): p. 19-30. DOI: https://doi.org/10.1260/1750-9548.7.1.19

Benmoussa, A. and L. Rahmani, Numerical Analysis of thermal behavior in agitated vessel with Non-Newtonian fluid. The International Journal of Multiphysics, 2018. 12(3): p. 209-220. DOI: https://doi.org/10.21152/1750-9548.12.3.209

Azimi, M., A. Hedesh, and S. Karimian, Flow modeling in a porous cylinder with regressing walls using semi analytical approach. The International Journal of Multiphysics, 2015. 9(1): p. 75-82. DOI: https://doi.org/10.1260/1750-9548.9.1.75

Rechia, A., et al., Numerical simulation of turbulent flow through a straight square duct using a near wall linear k – ε model. The International Journal of Multiphysics, 2007. 1(3): p. 317-336. DOI: https://doi.org/10.1260/175095407782219256

Khodayari, H., F. Ommi, and Z. Saboohi, Investigation of the primary breakup length and instability of non-Newtonian viscoelastic liquid jets. The International Journal of Multiphysics, 2018. 12(4): p. 327-348. DOI: https://doi.org/10.21152/1750-9548.12.4.327

Hona, J., Modeling of heat and high viscous fluid distributions with variable viscosity in a permeable channel. The International Journal of Multiphysics, 2015. 9(4): p. 341-360. DOI: https://doi.org/10.1260/1750-9548.9.4.341

Ozdemir, Z., et al., ALE and Fluid Structure Interaction for Sloshing Analysis. The International Journal of Multiphysics, 2009. 3(3): p. 307-336. DOI: https://doi.org/10.1260/175095409788922257

Ghodhbane, A., W. Kriaa, and A. ElCafsi, Analytical and numerical study of gaseous flow in microchannel with sudden change of section (expansion / contraction). The International Journal of Multiphysics, 2019. 13(4): p. 307-326. DOI: https://doi.org/10.21152/1750-9548.13.4.307

Soufian, M., Dynamic optimisation of an industrial web process. The International Journal of Multiphysics, 2008. 2(3): p. 291-312. DOI: https://doi.org/10.1260/175095408786927471

Souli, M., et al., A New Methodology for Fuel Mass Computation of an operating Aircraft. The International Journal of Multiphysics, 2016. 10(1): p. 99-116. DOI: https://doi.org/10.21152/1750-9548.10.1.99

Young, H., RA Freedman University Physics. 2008, Pearson Education.

Khawaja, H.A., Sound waves in fluidized bed using CFD–DEM simulations. Particuology, 2018. 38: p. 126-133. DOI: https://doi.org/10.1016/j.partic.2017.07.002

Nagib, M., et al., Application of Streamline Simulation to Gas Displacement Processes. The International Journal of Multiphysics, 2017. 11(4): p. 327-348. DOI: https://doi.org/10.21152/1750-9548.11.4.327

Xue, H. and H. Khawaja, Investigation of Ice-PVC separation under Flexural Loading using FEM Analysis. The International Journal of Multiphysics, 2016. 10(3): p. 247-264. DOI: https://doi.org/10.21152/1750-9548.10.3.247

Khawaja, H. Applicability extent of 2-D heat equation for numerical analysis of a multiphysics problem. in AIP Conference Proceedings. 2017. AIP Publishing LLC. DOI: https://doi.org/10.1063/1.4972667

Patankar, S., Numerical heat transfer and fluid flow. 2018: Taylor & Francis.

McDonough, J.M., Lectures in computational fluid dynamics of incompressible flow: Mathematics, algorithms and implementations. 2007. University of Kentucky.

Ierotheou, C., C. Richards, and M. Cross, Vectorization of the SIMPLE solution procedure for CFD problems—Part I: A basic assessment. Applied mathematical modelling, 1989. 13(9): p. 524-529. DOI: https://doi.org/10.1016/0307-904x(89)90062-0

Hirsch, C., Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. 2007: Elsevier. DOI: https://doi.org/10.1139/l08-021

Martineau, R.C., An efficient, semi-implicit pressure-based scheme employing a high-resolution finite element method for simulating transient and steady, inviscid and viscous, compressible flows on unstructured grids. 2003. DOI: https://doi.org/10.2172/910726

Hines, J., A comparative study of the simple and fractional step time integration methods for transient incompressible flows. 2008. University of Waterloo.

Alemi, M. and R. Maia, A comparative study between two numerical solutions of the Navier_Stokes equations. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 2017. 6(2): p. 1-12. DOI: https://doi.org/10.22061/JCARME.2017.580

Versteeg, H.K. and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method. 2007: Pearson education.

Khawaja, H. and M. Moatamedi, Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)–solution in MATLAB®. The International Journal of Multiphysics, 2018. 12(4): p. 313-326. DOI: https://doi.org/10.21152/1750-9548.12.4.313

Leyli, A., et al., Multiphysics Study of Forced Convection Conjugate Heat Transfer (CHT) Problem. The International Journal of Multiphysics, 2019. 13(3): p. 215-230. DOI: https://doi.org/10.21152/1750-9548.13.3.215

Incropera, F.P., et al., Fundamentals of heat and mass transfer. 2007: Wiley.

Khawaja, H., et al., Multiphysics Simulation of Infrared Signature of an Ice Cube. The International Journal of Multiphysics, 2016. 10(3): p. 291-302. DOI: https://doi.org/10.21152/1750-9548.10.3.291

Rashid, T., H.A. Khawaja, and K. Edvardsen, Measuring thickness of marine ice using IR thermography. Cold Regions Science and Technology, 2019. 158: p. 221-229. DOI: https://doi.org/10.1016/j.coldregions.2018.08.025

Salač, P. and M. Starý, The cooling of the pressing device in the glass industry. International Journal of Multiphysics, 2013. 7(3): p. 207-218. DOI: https://doi.org/10.1260/1750-9548.7.3.207

Rashid, T., H. Khawaja, and K. Edvardsen, Determination of Thermal Properties of Fresh Water and Sea Water Ice using Multiphysics Analysis. The International Journal of Multiphysics, 2016. 10(3): p. 277-290. DOI: https://doi.org/10.21152/1750-9548.10.3.277

Mehdaoui, R., M. Elmir, and A. Mojtabi, Effect of the Wavy permeable Interface on Double Diffusive Natural Convection in a Partially Porous Cavity. The International Journal of Multiphysics, 2010. 4(3): p. 217-231. DOI: https://doi.org/10.1260/1750-9548.4.3.217

Khawaja, H. and S. Scott, CFD-DEM Simulation of Propagation of Sound Waves in Fluid Particles Fluidised Medium. The International Journal of Multiphysics, 2011. 5(1): p. 47-60. DOI: https://doi.org/10.1260/1750-9548.5.1.47

Khawaja, H., CFD solution using SIMPLE, Mathworks, Editor. 2020, MATLAB Central File Exchange.

Published

2021-01-28

How to Cite

Leyli, A., Andleeb, Z., Khawaja, H., Messahel, R., Kanna, R., & Moatamedi, M. (2021). Conjugate Heat Transfer Model Based on SIMPLE and Coupled Energy and Heat Equations. The International Journal of Multiphysics, 15(1), 29-47. https://doi.org/10.21152/1750-9548.15.1.29

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 5 > >>