Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) – solution in MATLAB®

Authors

  • H Khawaja
  • M Moatamedi

DOI:

https://doi.org/10.21152/1750-9548.12.4.313

Abstract

This work presents a method for the solution of fundamental governing equations of computational fluid dynamics (CFD) using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) in MATLAB®. The fundamental governing equations of fluid mechanics are based on three laws of conservation, referred to as the law of conservation of mass, the law of conservation of momentum and the law of conservation of energy. The continuity equation represents the law of conservation of mass, the Navier-Stokes equations represent the law of conservation of momentum, and the energy equation represents the law of conservation of energy. In SIMPLE, the continuity and Navier-Stokes equations are required to be discretized and solved in a semi-implicit way. This article presents the discretization and method of solution applied to the flow around a 2-D square body. Code is written in MATLAB®. The results show the pressure and velocity fields of the converged solution.

References

S. Patankar. Numerical Heat Transfer and Fluid Flow: Taylor & Francis; 1980.

H. Khawaja. CFD-DEM Simulation of Minimum Fluidisation Velocity in Two Phase Medium. The International Journal of Multiphysics. 2011;5(2):89-100. https://doi.org/10.1260/1750-9548.5.2.89

H. Khawaja. CFD-DEM and Experimental Study of Bubbling in a Fluidized Bed. The Journal of Computational Multiphase Flows. 2015;7(4):227-40. https://doi.org/10.1260/1757-482x.7.4.227

H. Khawaja, T. Rashid, O. Eiksund, E. Brodal, K. Edvardsen. Multiphysics Simulation of Infrared Signature of an Ice Cube. The International Journal of Multiphysics. 2016;10(3):291-302. https://doi.org/10.21152/1750-9548.10.3.291

J. Anderson. Computational Fluid Dynamics: McGraw-Hill Education; 1995.

R. H. Pletcher, J. C. Tannehill, D. Anderson. Computational Fluid Mechanics and Heat Transfer, Third Edition: CRC Press; 2016. https://doi.org/10.1201/b12884

H. Khawaja. Application of a 2-D approximation technique for solving stress analyses problem in FEM. The International Journal of Multiphysics. 2015;9(4):317-24. https://doi.org/10.1260/1750-9548.9.4.317

H. Khawaja, S. Scott. CFD-DEM Simulation of Propagation of Sound Waves in Fluid Particles Fluidised Medium. The International Journal of Multiphysics. 2011;5(1):47-60. https://doi.org/10.1260/1750-9548.5.1.47

H. Khawaja, S. Scott, M. Virk, M. Moatamedi. Quantitative Analysis of Accuracy of Voidage Computations in CFD-DEM Simulations. The Journal of Computational Multiphase Flows. 2012;4(2):183-92. https://doi.org/10.1260/1757-482x.4.2.183

H. Khawaja, I. Raouf, K. Parvez, A. Scherer. Optimization of elstomeric micro-fluidic valve dimensions using non-linear finite element methods. The International Journal of Multiphysics. 2009;3(2):187-200. https://doi.org/10.1260/175095409788837847

H. Khawaja, K. Parvez. Validation of normal and frictional contact models of spherical bodies by FEM analysis. The International Journal of Multiphysics. 2010;4(2):175-85. https://doi.org/10.1260/1750-9548.4.2.175

H. Khawaja, M. Moatamedi. Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis. The International Journal of Multiphysics. 2014;8(1):91-100. https://doi.org/10.1260/1750-9548.8.1.91

H. Khawaja, T. Bertelsen, R. Andreassen, M. Moatamedi. Study of CRFP Shell Structures under Dynamic Loading in Shock Tube Setup. Journal of Structures. 2014;2014(Article ID 487809):6. https://doi.org/10.1155/2014/487809

H. Khawaja, R. Messahel, B. Ewan, S. Mhamed, M. Moatamedi. Experimental and Numerical Study of Pressure in a Shock Tube. Journal of Pressure Vessel Technology. 2016;138(4):6. https://doi.org/10.1115/1.4031591

U. Mughal, H. Khawaja, M. Moatamedi. Finite element analysis of human femur bone. The International Journal of Multiphysics. 2015;9(2):101-8. https://doi.org/10.1260/1750-9548.9.2.101

M. Kim. Finite Element Methods with Programming and Ansys: LULU Press; 2013.

T. Stolarski, Y. Nakasone, S. Yoshimoto. Engineering Analysis with ANSYS Software: Elsevier Science; 2011.

Y. W. Kwon, H. Bang. The Finite Element Method Using MATLAB, Second Edition: CRC Press; 2000.

H. D. Young, A. L. Ford, R. A. Freedman. University Physics: Pearson Education; 2008.

H. Khawaja. Applicability extent of 2-D heat equation for numerical analysis of a multiphysics problem. AIP Conference Proceedings. 2017;1798(1):020075. https://doi.org/10.1063/1.4972667

R. Courant, K. Friedrichs, H. Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen. 1928;100(1):32-74. https://doi.org/10.1007/bf01448839

MATLAB®. Natick, Massachusetts: The MathWorks Inc.; 2016.

H. Khawaja. Semi-Implicit Method for Pressure Linked Equations (SIMPLE) – solution in MATLAB®.

Published

2018-12-31

How to Cite

Khawaja, H., & Moatamedi, M. (2018). Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) – solution in MATLAB®. The International Journal of Multiphysics, 12(4), 313-326. https://doi.org/10.21152/1750-9548.12.4.313

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 5 > >>