Synergy between Noise Reduction Techniques Applied in Different Industries: A Review
DOI:
https://doi.org/10.21152/1750-9548.14.2.161Abstract
This review aims to assist aerodynamic noise in three industrial fields: Aerospace, Turbomachinery and Automotive. In this review the general terms in aeroacoustics is defined; and aerodynamic noise sources are recognized. The paper also reviews the brief literature on noise reduction techniques, with a particular focus on the state of the art numerical and experimental works. In Addition, developments in low speed designs for aerodynamic noise reduction, some passive and active methods for example serrated boundaries, porous media, noise absorber, and etc. are discussed. By investigating similarities in noise reduction techniques between these industries, this paper offers an outlook for noise reduction techniques in future.
References
America, A.S. of: PACS 2010 Regular Edition-Acoustics Appendix TO 43: ACOUSTICS. (2013)
Glegg, S., Devenport, W.: Aeroacoustics of low mach number flows: Fundamentals, analysis, and measurement. Academic Press (2017)
ANSI: S1.1-Terminology, American National Standard: Acoustic. Sec 3.03. (1994)
Spalart, P.R., Shur, M.L., Strelets, M.K., Travin, A.K.: Initial noise predictions for rudimentary landing gear. J. Sound Vib. 330, 4180–4195 (2011)
Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 264, 321–342 (1969)
Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 211, 564–587 (1952)
Lighthill, M.J.: On sound generated aerodynamically II. Turbulence as a source of sound. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 222, 1–32 (1954)
Atassi, O., Gilson, J.J.: IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction Future Challenges in Computational Aeroacoustics for Fan Broadband and Combustor Noise. Procedia Eng. 6, 193–202 (2010). https://doi.org/10.1016/j.proeng.2010.09.021
Krishna, S.R., Krishna, A.R., Ramji, K.: Reduction of motor fan noise using CFD and CAA simulations. Appl. Acoust. 72, 982–992 (2011). https://doi.org/10.1016/j.apacoust.2011.06.008
Pérez Arroyo, C., Kholodov, P., Sanjosé, M., Moreau, S.: CFD modeling of a realistic turbofan blade for noise prediction. Part 1: Aerodynamics. (2019)
Ando, S., Kimura, K., Segawa, K., Yamamoto, K.: Study on the Hybrid Method of CFD and Bubble Dynamics for Marine Propeller Cavitation Noise Prediction. In: Proceedings of the 10th International Symposium on Cavitation (CAV2018). ASME Press (2018)
Tester, B., Powles, C., Baker, N.J., Kempton, A.J.: Scattering of sound by liner splices: a Kirchhoff model with numerical verification. AIAA J. 44, 2009–2017 (2006)
Hardin, J.C., Lamkin, S.L.: Aeroacoustic Computation of Cylinder Wake Flow. AIAA J. 22, 51–57 (1984)
Hardin, J.C., Lamkin, S.L.: Computational Aeroacoustics—Present Status and Future Promise. In: Aero-and Hydro-Acoustics. pp. 253–259. Springer (1986)
Niemöller, A., Meinke, M.H., Schroeder, W., Albring, T.A., Gauger, N.R.: Noise Reduction Using a Direct-Hybrid CFD/CAA Method. 1–15 (2019). https://doi.org/10.2514/6.2019-2579
Gutin, L.: On the sound field of a rotating propeller. (1948)
Curle, N.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 231, 505–514 (1955)
Tam, C.K.W.: Computational aeroacoustics-Issues and methods. AIAA J. 33, 1788–1796 (1995)
Gély, D., Leylekian, L.: Aeroacoustics: an Overview for Air Vehicle Applications. (2014)
ICAO, I.: Aircraft Engine Emissions Databank. Int. Civ. Aviat. Organ. (2006)
ICAO, I.: Aircraft Engine Emissions Databank. Int. Civ. Aviat. Organ. (2002)
Huff, D.L.: Noise reduction technologies for turbofan engines. (2007)
Hartl, D.J., Mooney, J.T., Lagoudas, D.C., Calkins, F.T., Mabe, J.H.: Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis. Smart Mater. Struct. 19, 15021 (2009)
Mabe, J., Calkins, F., Butler, G.: Boeing’s variable geometry chevron, morphing aerostructure for jet noise reduction. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th. p. 2142 (2006)
Calkins, F., Butler, G.: Subsonic jet noise reduction variable geometry chevron. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit. p. 190 (2004)
Papamoschou, D., Shupe, R.: Effect of nozzle geometry on jet noise reduction using fan flow deflectors. In: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). p. 2707 (2006)
Papamoschou, D., Nishi, K.: Jet noise suppression with fan flow deflectors in realistic- shaped nozzle. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit. p. 993 (2005)
Papamoschou, D.: Parametric study of fan flow deflectors for jet noise suppression. In: 11th AIAA/CEAS Aeroacoustics Conference. p. 2890 (2005)
Seiner, J.M., Gilinsky, M.M.: Nozzle thrust optimization while reducing jet noise. AIAA J. 35, 420–427 (1997)
Narayanan, V.: Computational study of noise reduction in subsonic jet using chevron nozzles, (2019)
Varghese, J.T., NS, S.R., Shafi, M.S.: Analysis of Acoustic Testing on Static Chevrons Nozzles. In: 2019 Advances in Science and Engineering Technology International Conferences (ASET). pp. 1–6. IEEE (2019)
Engblom, W., Khavaran, A., Bridges, J.: Numerical prediction of chevron nozzle noise reduction using WIND-MGBK methodology. In: 10th AIAA/CEAS Aeroacoustics Conference. p. 2979 (2004)
Kanmaniraja, R., Freshipali, R., Abdullah, J., Niranjan, K., Balasubramani, K., Kumar, V.R.S.: 3D numerical studies on jets acoustic characteristics of chevron nozzles for aerospace applications. Int. Sch. Sci. Res. Innov. 8, 1510–1516 (2014)
Jaworski, J.W., Peake, N.: Aerodynamic noise from a poroelastic trailing edge with implications for the silent flight of owls. 18th AIAA/CEAS Aeroacoustics Conf. (33rd AIAA Aeroacoustics Conf. 4–6 (2012). https://doi.org/10.2514/6.2012-2138
Gruber, M., Joseph, P.F., Polacsek, C., Chong, T.P.: Noise reduction using combined trailing edge and leading edge serrations in a tandem airfoil experiment. 18th AIAA/CEAS Aeroacoustics Conf. (33rd AIAA Aeroacoustics Conf. 4–6 (2012). https://doi.org/10.2514/6.2012-2134
Strawn, R.C., Biswas, R.: Numerical simulations of helicopter aerodynamics and acoustics. J. Comput. Appl. Math. 66, 471–483 (1996). https://doi.org/10.1016/0377-0427(95)00171-9
Appelbaum, J., Duda, B., Fares, E., Khorrami, M.R.: Airframe noise simulations of a full- scale aircraft. 2018 AIAA/CEAS Aeroacoustics Conf. 1–15 (2018). https://doi.org/10.2514/6.2018-2973
Arcondoulis, E., Liu, Y., Li, Z., Yang, Y., Wang, Y., Li, W.: The design and noise characteristics of a structured porous coated cylinder in uniform flow. In: 2018 AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (2018)
Biedermann, T.M., Czeckay, P., Geyer, T.F., Kameier, F., Paschereit, C.O.: Noise source identification of aerofoils subjected to leading edge serrations using phased array beamforming. 2018 AIAA/CEAS Aeroacoustics Conf. 1–18 (2018). https://doi.org/10.2514/6.2018-3794
Chirico, G., Barakos, G.N., Bown, N.: Numerical aeroacoustic analysis of propeller designs. Aeronaut. J. 122, 283–315 (2018). https://doi.org/10.1017/aer.2017.123
Li, L., Liu, P., Guo, H., Geng, X., Hou, Y., Wang, J.: Aerodynamic and aeroacoustic experimental investigation of 30P30N high-lift configuration. Appl. Acoust. 132, 43–48 (2018). https://doi.org/10.1016/j.apacoust.2017.11.002
Takaishi, T., Kumada, T., Yokokawa, Y., Ito, Y., Murayama, M., Sakai, R., Shimada, A., Yamamoto, K.: Further noise reduction design for landing gear toward FQUROH second flight demonstration. 2018 AIAA/CEAS Aeroacoustics Conf. 1–16 (2018). https://doi.org/10.2514/6.2018-3300
Meher-Homji, C.B.: The Historical Evolution Of Turbomachinery. In: Proceedings of the 29th Turbomachinery Symposium. Texas A&M University. Turbomachinery Laboratories (2000)
Arnold, B., Lutz, T., Krämer, E.: Design of a boundary-layer suction system for turbulent trailing-edge noise reduction of wind turbines. Renew. Energy. 123, 249–262 (2018). https://doi.org/10.1016/j.renene.2018.02.050
Arakawa, C., Fleig, O., Iida, M., Shimooka, M.: Numerical approach for noise reduction of wind turbine blade tip with earth simulator. J. Earth Simulator. 2, 11–33 (2005)
Ghasemian, M., Nejat, A.: Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy. Energy. 88, 711–717 (2015)
Kuntz, M., Lohmann, D., Lieser, J.A., Pahlke, K.: Comparison of Rotor Noise Predictions by a Lifting Surface Method and Euler Solutions Using Kirchhoff Equation. In: Proc. First Joint CEAS/AQIAA Aeroacoustic Conf. 1995 (1995)
Lieser, J.A., Lohmann, D., Rohardt, C.H.: Aeroacoustic Design of a 6-Bladed Propeller. Aerosp. Sci. Technol. 1, 381–389 (1997). https://doi.org/10.1016/S1270-9638(97)90012-2
Fehse, K.-R., Neise, W.: Generation mechanisms of low-frequency centrifugal fan noise. AIAA J. 37, 1173–1179 (1999)
Jones, B.R., Crossley, W.A., Lyrintzis, A.S.: Aerodynamic and aero acoustic optimization of airfoils via a parallel genetic algorithm. 7th AIAA/USAF/NASA/ISSMO Symp. Multidiscip. Anal. Optim. 37, (1998). https://doi.org/10.2514/6.1998-4811
Chapman, C.J.: Some benchmark problems for computational aeroacoustics. J. Sound Vib. 270, 495–508 (2004)
Kim, T., Lee, S., Kim, H., Lee, S.: Design of low noise airfoil with high aerodynamic performance for use on small wind turbines. Sci. China Ser. E Technol. Sci. 53, 75–79 (2010)
Mohamed, M.H.: Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines. Energy. 65, 596–604 (2014). https://doi.org/10.1016/j.energy.2013.11.031
Mohamed, M.H.: Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (Computational Fluid Dynamics) techniques. Energy. 96, 531–544 (2016)
Maizi, M., Mohamed, M.H., Dizene, R., Mihoubi, M.C.: Noise reduction of a horizontal wind turbine using different blade shapes. Renew. Energy. 117, 242–256 (2018). https://doi.org/10.1016/j.renene.2017.10.058
Cerrato, G.: Automotive sound quality–powertrain, road and wind noise. Sound Vib. 43, 16–24 (2009)
Murata, H., Tanaka, H., Takada, H., Ohsasa, Y.: Sound quality evaluation of passenger vehicle interior noise. SAE Technical Paper (1993)
Brandl, F.K., Biermayer, W.: A new tool for the onboard objective assessment of vehicle interior noise quality. SAE Technical Paper (1999)
Gonzalez, A., Ferrer, M., De Diego, M., Pinero, G., Garcia-Bonito, J.J.: Sound quality of low-frequency and car engine noises after active noise control. J. Sound Vib. 265, 663– 679 (2003)
Mohamed, E.S., Abouel-Seoud, S., Eltantawie, M., Mohamded, A., Salah, M.: Improved vehicle interior structure-borne noise induced by the powertrain using parallel dry friction damper. J. Low Freq. Noise, Vib. Act. Control. 37, 295–312 (2018)
Hucho, W., Sovran, G.: Aerodynamics of road vehicles. Annu. Rev. Fluid Mech. 25, 485– 537 (1993)
Musser, C., Calloni, M., Golota, A., Zerbib, N.: Aero-Vibro-Acoustic Simulation Methodologies for Vehicle Wind Noise Reduction. SAE Technical Paper (2019)
Massarotti, M.R., Wolf, W.R.: Aeroacoustic analysis of automotive roof crossbars through on-track acoustic measurements. Appl. Acoust. 142, 95–105 (2018). https://doi.org/10.1016/j.apacoust.2018.08.012
Gloerfelt, X.: Noise from automotive components. Aerodyn. noise from wall-bounded flows. 9–13 (2009)
Hartmann, M., Ocker, J., Lemke, T., Mutzke, A., Schwarz, V., Tokuno, H., Toppinga, R., Unterlechner, P., Wickern, G.: Wind noise caused by the side-mirror and a-pillar of a generic vehicle model. In: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). p. 2205 (2012)
Tsai, C.H., Fu, L.M., Tai, C.H., Huang, Y.L., Leong, J.C.: Computational aero-acoustic analysis of a passenger car with a rear spoiler. Appl. Math. Model. 33, 3661–3673 (2009). https://doi.org/10.1016/j.apm.2008.12.004
Shojaefard, M.H., Goudarzi, K., Fotouhi, H.: Numerical study of airflow around vehicle a- pillar region and windnoise generation prediction. Am. J. Appl. Sci. 6, 276 (2009)
Wu, S.F., Su, S.G., Shah, H.S.: Modelling of the noise spectra of axial flow fans in a free field. J. Sound Vib. 200, 379–399 (1997)
Vad, J.: Forward blade sweep applied to low-speed axial fan rotors of controlled vortex design: an overview. J. Eng. Gas Turbines Power. 135, 12601 (2013)
Kalmár-nagy, T., Bak, B.D.: Vibration and Noise of an Axial Flow Fan. 109–113 (2015). https://doi.org/10.3311/PPme.7948
Benedek, T., Tóth, P.: Beamforming measurements of an axial fan in an industrial environment. Period. Polytech. Mech. Eng. 57, 37–46 (2013)
Underbrink, J.R.: Aeroacoustic phased array testing in low speed wind tunnels. In: Aeroacoustic measurements. pp. 98–217. Springer (2002)
Sijtsma, P., Oerlemans, S., Holthusen, H.: Location of rotating sources by phased array measurements. In: 7th AIAA/CEAS Aeroacoustics Conference and Exhibit. p. 2167 (2001)
De Gennaro, M., Kuehnelt, H.: Broadband noise modelling and prediction for axial fans. In: Proceedings of the Internataional Conference Fan Noise, Technology and Numerical Methods (2012)
Bennouna, S., Matharan, T., Cheriaux, O.: Automotive HVAC Noise Reduction. SAE Tech. Pap. 2018-June, 1–5 (2018). https://doi.org/10.4271/2018-01-1519
Chen, X., Wang, S., Wu, Y. qiang, Li, Y. yang, Wang, H. yu: Experimental and numerical investigations of the aerodynamic noise reduction of automotive side view mirrors. J. Hydrodyn. 30, 642–650 (2018). https://doi.org/10.1007/s42241-018-0070-1
Chu, Y.-J., Shin, Y.-S., Lee, S.-Y.: Aerodynamic analysis and noise-reducing design of an outside rear view mirror. Appl. Sci. 8, 519 (2018)
Jung, W., Cha, Y., Song, S., Byun, S., Ho, S., Kim, M.: Direct Aeroacoustics Predictions of Automotive HVAC Systems based on Lattice Boltzmann Method. SAE Tech. Pap. 2018-June, 1–7 (2018). https://doi.org/10.4271/2018-01-1520
Published
How to Cite
Issue
Section
Copyright (c) 2020 M Yadegari, F Ommi, Z Saboohi

This work is licensed under a Creative Commons Attribution 4.0 International License.