Review on Self-Sustainable Power Generation Technologies for Future Typical Wearable Applications
DOI:
https://doi.org/10.21152/1750-9548.17.3.349Abstract
Wearable technology has broad market prospects in the military, fire protection, medical and health, sports and other fields under its ability to effectively solve practical application needs. Self-powered energy systems with miniaturized, light-weight, highly flexible, stretchable, bendable, and wearable properties have received extensive attention in the industry as they can meet the needs of new-generation wearable electronic devices. Firstly, the article summarizes the recent progress and existing problems of flexible solar cells, flexible triboelectric nanogenerators, flexible piezoelectric nanogenerators, flexible thermoelectric generators, and energy harvesting devices for sweat power generation. Secondly, the development and challenges of flexible lithium-ion batteries and flexible super capacitors for energy storage devices are summarized. The research progress of energy management strategies is also discussed. Then, the main applications of self-powered systems in wearable electronic devices are introduced, including Individual Soldier Equipment, Protective Clothing Devices and Smart Wearable Electronic Devices. Finally, the future development direction of self-powered energy systems for wearable electronic devices is discussed.
References
Scheit, L., Optimizing the Introduction of Wearable Sensors Into the German Armed Forces for Military Medical Applications. Military Medicine, 2021, 186 (9-10): p. 962-968. https://doi.org/10.1093/milmed/usab015
Dar, G., Saposhnik, A., Finestone, A. S., & Ayalon, M., The Effect of Load Carrying on Gait Kinetic and Kinematic Variables in Soldiers with Patellofemoral Pain Syndrome. Applied Sciences-Basel, 2023, 13(4): p. 2264. https://doi.org/10.3390/app13042264
Su, X., Tian, S., Li, H., Zhang, X., Shao, X., Gao, J., & Ye, H., Thermal and humid environment improvement of the protective clothing for medical use with a portable cooling device: Analysis of air supply parameters. Energy and Buildings, 2021, 240: p. 110909. https://doi.org/10.1016/j.enbuild.2021.110909
Shakeriaski, F., Ghodrat, M., Rashidi, M., & Samali, B., Smart coating in protective clothing for firefighters: An overview and recent improvements. Journal of Industrial Textiles, 2022, 51(5_SUPPL): p. 7428S-7454S. https://doi.org/10.1177/15280837221101213
Ma, J. L., Du, Y. H., Jiang, Y., Shen, L. X., Ma, H. T., Lv, F. J., Cui, Z. W., Pan, Y. Z., Shi, L., Zhu, N., Wearable healthcare smart electrochemical biosensors based on co-assembled prussian blue-graphene film for glucose sensing. MicrochimicaActa, 2022, 189 (1): p. 1-9. https://doi.org/10.1007/s00604-021-05087-3
Deng, Z. Y., Guo, L. H., Chen, X. M., & Wu, W. W., Smart Wearable Systems for Health Monitoring. Sensors, 2023, 23(5): p. 2479. https://doi.org/10.3390/s23052479
Menon, V. G., Adhikari, M., Hemanth, J., & Rawat, D. B., Guest Editorial Advanced Wearable Sensors for Smart Monitoring and Disease Prediction. IEEE Journal of Biomedical and Health Informatics, 2023, 27(5): p. 2286-2287. https://doi.org/10.1109/JBHI.2023.3265410
Olzhabay, Y., Ng, A., Ukaegbu, I. A., Perovskite PV Energy Harvesting System for Uninterrupted IoT Device Applications. Energies, 2021, 14 (23): p. 7946. https://doi.org/10.3390/en14237946
Mustafa, G. M., Saba, S., Mahmood, Q., Kattan, N. A., Sfina, N., Alshahrani, T., Amin, M. A., Study of optoelectronic, thermoelectric, mechanical properties of double perovskites Cs2AgAsX6 (X = cl, br, I) for solar cells and energy harvesting. Optical and Quantum Electronics, 2023, 55(6): p. 527. https://doi.org/10.1007/s11082-023-04666-3
Yang, Y., Chen, L., He, J., Hou, X. J., Qiao, X. J., Xiong, J. J., Chou, X. J., Flexible and Extendable Honeycomb-Shaped Triboelectric Nanogenerator for Effective Human Motion Energy Harvesting and Biomechanical Sensing. Advanced Materials Technologies, 2022, 7 (1): p. 2100702. https://doi.org/10.1002/admt.202100702
Hou, J. W., Qian, S., Hou, X. J., Zhang, J., Wu, H., Guo, Y. Y. H., Chou, X. J., A high-performance mini-generator with average power of 2 W for human motion energy harvesting and wearable electronics applications. Energy Conversion and Management, 2023, 277: p. 116612. https://doi.org/10.1016/j.enconman.2022.116612
Zhang, Y. F., Li, F. Z., Yang, K., Liu, X., Chen, Y. G., Lao, Z. Q., Mai, K. C., Zhang, Z. S., Polymer Molecular Engineering Enables Rapid Electron/Ion Transport in Ultra-Thick Electrode for High-Energy-Density Flexible Lithium-Ion Battery. Advanced Functional Materials, 2021, 31 (19): p. 2100434. https://doi.org/10.1002/adfm.202100434
Deng, R., & He, T., Flexible Solid-State Li-ion batteries: Materials and Structures. Energies, 2023, 16(12): p. 4549. https://doi.org/10.3390/en16124549
Hu, X., Chen, Y. M., Xu, W., Zhu, Y., Kim, D., Fan, Y., Chen, Y., 3D-Printed Thermoplastic Polyurethane Electrodes for Customizable, Flexible Li-ion batteries with an Ultra-Long Lifetime. Small, 2023, p. 2301604. https://doi.org/10.1002/smll.202301604
Li, Y. Q., Liu, X. H., Yang, Y., Qian, C. H., Chen, C., Han, L., Han, Q. S., A stretchable and self-healable conductive hydrogels based on gelation/polyacrylamide/polypyrrole for all-in-one flexible supercapacitors with high capacitance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: p. 128145. https://doi.org/10.1016/j.colsurfa.2021.128145
Sayyed, S. G., Shaikh, A. V., Shinde, U. P., Hiremath, P., &Naik, N., Copper oxide-based high-performance symmetric flexible supercapacitor: potentiodynamic deposition. Journal of Materials Science-Materials in Electronics, 2023, 34(17): p. 1361. https://doi.org/10.1007/s10854-023-10738-7
Wang, X. D., Wang, S., Li, C. L., Cui, Y. H., Yong, Z. P., Liang, D., Wang, Z., Flexible supercapacitor based on MXene cross-linked organic gel electrolyte with wide working temperature. International Journal of Hydrogen Energy, 2023, 48(12): p. 4921-4930. https://doi.org/10.1016/j.ijhydene.2022.10.201
Moayedi, H., Mosavi, A., An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework. Energies, 2021, 14 (4): p. 1196. https://doi.org/10.3390/en14041196
Li, C., Cong, S., Tian, Z. N., Song, Y. Z., Yu, L. H., Lu, C., Shao, Y. L., Li, J., Zou, G. F., Rummeli, M. H., Dou, S. X., Sun, J. Y., Liu, Z. F., Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 2019, 60: p. 247-256. https://doi.org/10.1016/j.nanoen.2019.03.061
Lan, Y. J., Wang, Y., Song, Y. L., Efficient flexible perovskite solar cells based on a polymer additive. Flexible and Printed Electronics, 2020, 5(1): p. 014001. https://doi.org/10.1088/2058-8585/ab5ce3
Wu, Z. W., Li, P., Zhao, J., Xiao, T., Hu, H., Sun, P., Wu, Z. H., Hao, J. H., Sun, C. L., Zhang, H. L., Huang, Z. F., Zheng, Z. J., Low-Temperature-Deposited TiO2 Nanopillarsfor Efficient and Flexible Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 8(3): p. 2001512. https://doi.org/10.1002/admi.202170016
Jin, J. J., Li, J. H., Tai, Q. D., Chen, Y., Mishra, D. D., Deng, W. Q., Xin, J., Guo, S. Y., Xiao, B. C., Wang, X. B., Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. Journal of Power Sources, 2021, 482: p. 228953. https://doi.org/10.1016/j.jpowsour.2020.228953
Li, X. G., Shi, Z. J., Behrouznejad, F., Hatamvand, M., Zhang, X., Wang, Y. X., Liu, F. C., Wang, H. L., Liu, K., Dong, H. L., Mudasar, F., Wang, J., Yu, A. R., Zhan, Y. Q., Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer. Journal of Energy Chemistry, 2022, 67: p. 1-7. https://doi.org/10.1016/j.jechem.2021.09.021
Li, Z. H., Wang, Z. H., Jia, C. M., Wan, Z., Zhi, C. Y., Li, C., Zhang, M. H., Zhang, C., Li, Z., Annealing free tin oxide electron transport layers for flexible perovskite solar cells. Nano Energy, 2022, 94: p. 106919. https://doi.org/10.1016/j.nanoen.2022.106919
Koo, D., Jung, S., Seo, J., Jeong, G., Choi, Y., Lee, J., Lee, S. M., Cho, Y., Jeong, M., Lee, J., Oh, J., Yang, C., Park, H., Flexible Organic Solar Cells Over 15% Efficiency with Polyimide-Integrated Graphene Electrodes. Joule, 2020, 4(5): p. 1021-1034. https://doi.org/10.1016/j.joule.2020.02.012
Huang, W. C., Jiang, Z., Fukuda, K., Jiao, X. C., McNeill, C. R., Yokota, T., Someya, T., Efficient and Mechanically Robust Ultraflexible Organic Solar Cells Based on Mixed Acceptors. Joule 2020, 4(1): p. 128-141. https://doi.org/10.1016/j.joule.2019.10.007
Wen, P., Peng, R. X., Song, W., Ge, J. F., Yin, X., Chen, X., Liu, C. R., Zhang, X. L., Ge, Z. Y., A simple and effective method via PH1000 modified Ag-Nanowires electrode enable efficient flexible nonfullerene organic solar cells. Organic Electronics, 2021, 94: p. 106172. https://doi.org/10.1016/j.orgel.2021.106172
Du, J. H., Zhang, D. D., Wang, X., Jin, H., Zhang, W. M., Tong, B., Liu, Y., Burn, P. L., Cheng, H. M., Ren, W. C., Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene. Carbon, 2021, 171: p. 350-358. https://doi.org/10.1016/j.carbon.2020.08.038
Wang, Y. M., Chen, Q. M., Zhang, G. C., Xiao, C. Y., Wei, Y., Li, W. W., Ultrathin Flexible Transparent Composite Electrode via Semi-embedding Silver Nanowires in a Colorless Polyimide for High-Performance Ultraflexible Organic Solar Cells. ACS Appled Materials & Interfaces, 2022, 14(4): p. 5699-5708. https://doi.org/10.1021/acsami.1c18866
Kim, J. H., Koo, S. J., Cho, H., Choi, J. W., Ryu, S. Y., Kang, J. W., Jin, S. H., Ahn, C., Song, M., 6.16% Efficiency of Solid-State Fiber Dye-Sensitized Solar Cells Based on LiTFSI Electrolytes with Novel TEMPOL Derivatives. ACS Sustainable Chemistry & Engineering, 2020, 8(40): p. 15065-15071. https://doi.org/10.1021/acssuschemeng.0c05427
Gurulakshmi, M., Meenakshamma, A., Siddeswaramma, G., Susmitha, K., VenkataSubbaiah, Y. P., Narayana, T., Raghavender, M., Electrodeposited MoS2 counter electrode for flexible dye sensitized solar cell module with ionic liquid assisted photoelectrode. Solar Energy, 2020, 199: p. 447-452. https://doi.org/10.1016/j.solener.2020.02.047
Gu, X. Y., Chen, E. Z., Wei, K., Chen, L. L., Zhang, C. Y., Sun, G. W., Tan, J. R., Bi, H. S., Xie, H., Sun, G. Z., Gao, X., Pan, X. J., Zhou, J. Y., Design of highly ordered hierarchical catalytic nanostructures as high-flexibility counter electrodes for fiber-shaped dye-sensitized solar cells. Applied Physics Letters, 2021, 118(5): p. 053102. https://doi.org/10.1063/5.0038801
Kim, J. H., Yoo, S. J., Lee, D., Choi, J. W., Han, S. C., Ryu, T. I., Lee, H. W., Shin, M., Song, M., Highly efficient and stable solid-state fiber dye-sensitized solar cells with Ag-decorated SiO2 nanoparticles. Nano Research, 2021, 14: p. 2728-2734. https://doi.org/10.1007/s12274-020-3278-7
Fan, X. J., Flexible dye-sensitized solar cells assisted with lead-free perovskite halide. Journal of Materials Research, 2022, 37, p. 866-875. https://doi.org/10.1557/s43578-022-00501-9
Chu, Y. W., Hsu, F. C., Tzou, C. Y., Li, C. P., Chen, Y. F., Fully Solution Processed, Stable, and Flexible Bifacial Polymer Solar Cells. IEEE Journal of Photovoltaics, 2020, 10(2): p. 508-513. https://doi.org/10.1109/JPHOTOV.2019.2957654
Wang, Z. G., Han, Y. F., Yan, L. P., Gong, C., Kang, J. C., Zhang, H., Sun, X., Zhang, L. P., Lin, J., Luo, Q., Ma, C. Q., High Power Conversion Efficiency of 13.61% for 1 cm(2)Flexible Polymer Solar Cells Based on Patternable and Mass-Producible Gravure-Printed Silver Nanowire Electrodes. Advanced Functional Materials, 2021, 31(4): p. 2007276. https://doi.org/10.1002/adfm.202007276
Zeng, L., Ma, R. J., Zhang, Q., Liu, T., Xiao, Y. Q., Zhang, K., Cui, S. Q., Zhu, W. G., Lu, X. H., Yan, H., Liu, Y., Synergy strategy to the flexible alkyl and chloride side-chain engineered quinoxaline-based D-A conjugated polymers for efficient non-fullerene polymer solar cells. Materials Chemistry Frontiers, 2021, 5(4): p. 1906-1916. https://doi.org/10.1039/D0QM00826E
Liu, H., Wu, J., Fu, Y. Y., Wang, B., Yang, Q. Q., Sharma, G. D., Keshtov, M. L., Xie, Z. Y., One-step solution-processed low surface roughness silver nanowire composite transparent electrode for efficient flexible indium tin oxide-free polymer solar cells. Thin Solid Films, 2021, 718: p. 138486. https://doi.org/10.1016/j.tsf.2020.138486
Liu, H., Li, Y. Z., Wu, J., Fu, Y. Y., Tang, H., Yi, X. T., Xie, Z. Y., MEA surface passivation of a AgNWs:SnO2 composite transparent electrode enables efficient flexible ITO-free polymer solar cells. Journal of Materials Chemistry C, 2021, 9(31): p. 9914-9921. https://doi.org/10.1039/D1TC02525B
Mao, Y. P., Zhu, Y. S., Zhao, T. M., Jia, C. J., Wang, X., Wang, Q., Portable Mobile Gait Monitor System Based on Triboelectric Nanogenerator for Monitoring Gait and Powering Electronics. Energies, 2021, 14 (16): p. 4996. https://doi.org/10.3390/en14164996
Ahmed, R., Kim, Y., Zeeshan, Chun, W., Development of a Tree-Shaped Hybrid Nanogenerator Using Flexible Sheets of Photovoltaic and Piezoelectric Films. Energies, 2019, 12 (2): p. 299. https://doi.org/10.3390/en12020229
Tanwar, A., Lal, S., Razeeb, K. M., Structural Design Optimization of Micro-Thermoelectric Generator for Wearable Biomedical Devices. Energies, 2021, 14 (8): p. 2339. https://doi.org/10.3390/en14082339
Manjakkal, L., Yin, L., Nathan, A., Wang, J., Dahiya, R., Energy Autonomous Sweat-Based Wearable Systems. Advanced Materials, 2021, 33 (35): p. 2100899. https://doi.org/10.1002/adma.202100899
Wang, L. L., Liu, W. Q., Yan, Z. G., Wang, F. J., Wang, X., Stretchable and Shape-Adaptable Triboelectric Nanogenerator Based on Biocompatible Liquid Electrolyte for Biomechanical Energy Harvesting and Wearable Human-Machine Interaction. Advanced Functional Materials, 2021, 31(7): p. 2007221. https://doi.org/10.1002/adfm.202007221
Wang, J. X., He, J. M., Ma, L. L., Yao, Y. L., Zhu, X. D., Peng, L., Liu, X. R., Li, K. S., Qu, M. N., A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chemical Engineering Journal, 2021, 423: p. 130200. https://doi.org/10.1016/j.cej.2021.130200
Zu, G. Q., Wei, Y., Sun, C. Y., Yang, X. J., Humidity-resistant, durable, wearable single-electrode triboelectric nanogenerator for mechanical energy harvesting. Journal of Materials Science, 2022, 57: p. 2813-2824. https://doi.org/10.1007/s10853-021-06696-2
Yang, W., Chen, H. M., Wu, M. Q., Sun, Z. Y., Gao, M., Li, W. J., Li, C. Y., Yu, H. L., Zhang, C., Xu, Y., Wang, J., A Flexible Triboelectric Nanogenerator Based on Cellulose-Reinforced MXene Composite Film. Advanced Materials Interfaces, 2022, 9(7): p. 2102124. https://doi.org/10.1002/admi.202102124
Cai, T. B., Liu, X. K., Ju, J. P., Lin, H., Ruan, H., Xu, X., Lu, S. R., Li, Y. Q., Flexible cellulose/collagen/graphene oxide based triboelectric nanogenerator for self-powered cathodic protection. Materials Letters, 2022, 306: p. 130904. https://doi.org/10.1016/j.matlet.2021.130904
Kim, I., Roh, H., Yu, J., Jayababu, N., Kim, D., Boron Nitride Nanotube-Based Contact Electrification-Assisted Piezoelectric Nanogenerator as a Kinematic Sensor for Detecting the Flexion-Extension Motion of a Robot Finger. ACS Energy Letters, 2020, 5(5): p. 1577-1585. https://doi.org/10.1021/acsenergylett.0c00451
Wang, F., Sun, H. J., Guo, H. L., Sui, H. T., Wu, Q., Liu, X. F., Huang, D. P., High performance piezoelectric nanogenerator with silver nanowires embedded in polymer matrix for mechanical energy harvesting. Ceramics International, 2021, 47(24): p. 35096-35104. https://doi.org/10.1016/j.ceramint.2021.09.052
Lu, H. W., Shi, H. J., Chen, G. R., Wu, Y. H., Zhang, J. W., Yang, L. Y., Zhang, Y. J., Zheng, H. W., High-Performance Flexible Piezoelectric Nanogenerator Based on Specific 3D Nano BCZT@Ag Hetero-Structure Design for the Application of Self-Powered Wireless Sensor System. Small, 2021, 17(37): p. 2101333. https://doi.org/10.1002/smll.202101333
Li, X., Yu, W. G., Gao, X. F., Liu, H. H., Han, N., Zhang, X. X., PVDF microspheres@PLLA nanofibers-based hybrid tribo/piezoelectric nanogenerator with excellent electrical output properties. Materials Advances, 2021, 2: p. 6011-6019. https://doi.org/10.1039/D1MA00464F
Mahanty, B., Ghosh, S. K., Jana, S., Mallick, Z., Sarkar, S., Mandal, D., ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring. Sustainable Energy & Fuels, 2021, 5(17): p. 4389-4400. https://doi.org/10.1039/D1SE00444A
Wen, D. L., Deng, H. T., Liu, X., Li, G. K., Zhang, X. R., Zhang, X. S., Wearable multi-sensing double-chain thermoelectric generator. Microsystems &Nanoengineering, 2020, 6(1): p. 1-13. https://doi.org/10.1038/s41378-020-0179-6
Lu, Y., Li, X., Cai, K. F., Gao, M. Y., Zhao, W. Y., He, J. Q., Wei, P., Enhanced-Performance PEDOT:PSS/Cu2Se-Based Composite Films for Wearable Thermoelectric Power Generators. ACS Applied Materials & Interfaces, 2021, 13(1): p. 631-638. https://doi.org/10.1021/acsami.0c18577
Hou, S. H., Liu, Y. J., Yin, L., Chen, C., Wu, Z. X., Wang, J., Luo, Y., Xue, W. H., Liu, X. J., Zhang, Q., Cao, F., High performance wearable thermoelectric generators using Ag2Se films with large carrier mobility. Nano Energy, 2021, 87: p. 106223. https://doi.org/10.1016/j.nanoen.2021.106223
Toan, N. V., Tuoi, T. T. K., Hieu, N. V., Ono, T., Thermoelectric generator with a high integration density for portable and wearable self-powered electronic devices. Energy Conversion and Management, 2021, 245: p. 114571. https://doi.org/10.1016/j.enconman.2021.114571
Shi, Y. G., Lu, X. Z., Xiang, Q. P., Li, J., Shao, X. J., Bao, W. M., Stretchable thermoelectric generator for wearable power source and temperature detection applications. Energy Conversion and Management, 2022, 253: p. 115167. https://doi.org/10.1016/j.enconman.2021.115167
Sun, M. M., Gu, Y. N., Pei, X. Y., Wang, J. J., Liu, J., Ma, C. B., Bai, J., Zhou, M., A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy, 2021, 86: p. 106061. https://doi.org/10.1016/j.nanoen.2021.106061
Zhang, X. P., Yang, J. C., Borayek, R., Qu, H., Nandakumar, D. K., Zhang, Q., Ding, J., Tan, S. C., Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting. Nano Energy, 2020, 75: p. 104873. https://doi.org/10.1016/j.nanoen.2020.104873
Liu, L. X., Zhu, M. S., Huang, S. Z., Lu, X. Y., Zhang, L., Li, Y., Wang, S. T., Liu, L. F., Weng, Q. H., Schmidt, O. G., Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries. Journal of Materials Chemistry A, 2019, 7 (23): p. 14097-14107. https://doi.org/10.1039/C9TA03302E
Fu, J., Kang, W. B., Guo, X. D., Wen, H., Zeng, T. B., Yuan, R. X., Zhang, C. H., 3D hierarchically porous NiO/Graphene hybrid paper anode for long -life and high rate cycling flexible Li -ion batteries. Journal of Energy Chemistry, 2020, 47: p. 172-179. https://doi.org/10.1016/j.jechem.2019.11.022
Peng, J. J., Tao, J., Liu, Z. J., Yang, Y. H., Yu, L., Zhang, M., Wang, F., Ding, Y., Ultra-stable and high capacity flexible Li-ion batteries based on bimetallic MOFs derivatives aiming for wearable electronic devices. Chemical Engineering Journal, 2021, 417: p. 129200. https://doi.org/10.1016/j.cej.2021.129200
Zeng, L., Xi, H. X., Liu, X. G., Zhang, C. H., Coaxial Electrospinning Construction Si@C Core-Shell Nanofibers for Advanced Flexible Li-ion batteries. Nanomaterials, 2021, 11(12): p. 3454. https://doi.org/10.3390/nano11123454
Fang, Z. H., Duan, S. R., Liu, H. T., Hong, Z. X., Wu, H. C., Zhao, F., Li, Q. Q., Fan, S. S., Duan, W. H., Wang, J. P., Lithium Storage Mechanism and Application of Micron-Sized Lattice-Reversible Binary Intermetallic Compounds as High-Performance Flexible Lithium-Ion Battery Anodes. Small, 2022, 18(2): p. 2105172. https://doi.org/10.1002/smll.202105172
Kim, H. S., Kim, D. W., Kim, S. S., Senthil, C., Jung, H. Y., Freestanding conversion-type anode via one-pot formation for flexible Li-ion battery. Chemical Engineering Journal, 2022, 427: p. 130937. https://doi.org/10.1016/j.cej.2021.130937
Li, K., Zhang, J. T., Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Science China-Materials, 2018, 61 (2): p. 210-232. https://doi.org/10.1007/s40843-017-9154-2
Khan, Y., Bashir, S., Hina, M., Ramesh, S., Ramesh, K., Mujtaba, M. A., Lahiri, I., Ramesh, S., Effect of Charge Density on the Mechanical and Electrochemical Properties of Poly (acrylic acid) Hydrogel Electrolytes Based Flexible Supercapacitors. Materials Today Communications, 2020, 25: p. 101558. https://doi.org/10.1016/j.mtcomm.2020.101558
Li, Z., Bu, J. T., Zhang, C. Y., Cheng, L. L., Pan, D. Y., Chen, Z. W., Wu, M. H., Electrospun carbon nanofibers embedded with MOF-derived N-doped porous carbon and ZnO quantum dots for asymmetric flexible supercapacitors. New Journal of Chemistry, 2021, 45(24): p. 10672-10682. https://doi.org/10.1039/D1NJ01369F
Mao, X. Q., Zou, Y. J., Xu, F., Sun, L. X., Chu, H. L., Zhang, H. Z., Zhang, J., Xiang, C. L., Three-Dimensional Self-Supporting Ti3C2 with MoS2 and Cu2O Nanocrystals for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13(19): p. 22664-22675. https://doi.org/10.1021/acsami.1c05231
Li, X., Li, Y. L., Tian, X. D., Song, Y., Cui, Y. M., Flexible and cross-linked carbon nanofibers based on coal liquefaction residue for high rate supercapacitors. Journal of Alloys and Compounds, 2022, 903: p. 163919. https://doi.org/10.1016/j.jallcom.2022.163919
Wang, S. X., Fang, S. W., Zhang, K. X., Zou, Y. J., Xiao, Z., Xu, F., Sun, L. X., Xiang, C. L., Growth of yolk-shell CuCo2S4 on NiOnanosheets for high-performance flexible supercapacitors. Ceramics International, 2022, 48(3): p. 3636-3646. https://doi.org/10.1016/j.ceramint.2021.10.144
Ferahtia, S., Djeroui, A., Mesbahi, T., Houari, A., Zeghlache, S., Rezk, H., Paul, T., Optimal Adaptive Gain LQR-Based Energy Management Strategy for Battery-Supercapacitor Hybrid Power System. Energies, 2021, 14 (6): p. 1660. https://doi.org/10.3390/en14061660
Sorlei, I. S., Bizon, N., Thounthong, P., Varlam, M., Carcadea, E., Culcer, M., Iliescu, M., Raceanu, M., Fuel Cell Electric Vehicles-A Brief Review of Current Topologies and Energy Management Strategies. Energies, 2021, 14 (1): p. 252. https://doi.org/10.3390/en14010252
Shi, H., Zhao, H., Liu, Y., Gao, W., Dou, S. C., Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions. Sensors, 2019, 19 (12): p. 2651. https://doi.org/10.3390/s19122651
Jethwa, B., Panchasara, M., Zanzarukiya, A., Parekh, R., Realtime soldier's health monitoring system incorporating low power LoRa communication. International Journal of Sensor Networks, 2021, 35 (4): p. 221-229. https://doi.org/10.1504/IJSNET.2021.114743
Raj, J. V., Sarath, T. V., AnIoT based Real-Time Stress Detection System for Fire-Fighters. 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, IEEE, 2019, p. 354-360. https://doi.org/10.1109/ICCS45141.2019.9065866
Dabrowska, A., Kobus, M., Pekoslawski, B., Starzak, L., A Comparative Analysis of Thermoelectric Modules for the Purpose of Ensuring Thermal Comfort in Protective Clothing. Applied sciences, 2021, 11 (17): p. 8068. https://doi.org/10.3390/app11178068
Pillai, S., Upadhyay, A., Sayson, D., Nguyen, B. H., Tran, S. D., Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules, 2022, 27 (1): p. 165. https://doi.org/10.3390/molecules27010165
Li, Z. M., Li, B., Chen, B. Q., Zhang, J., Li, Y., 3D printed graphene/polyurethane wearable pressure sensor for motion fitness monitoring. Nanotechnology, 2021, 32 (39): p. 395503. https://doi.org/10.1088/1361-6528/ac0b1b
Liu, W. J., Long, Z. H., Yang, G. Y., Xing, L. L., A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data. Biosensors, 2022, 12 (2): p. 60. https://doi.org/10.3390/bios12020060
Published
How to Cite
Issue
Section
Copyright (c) 2023 Y Bi, M Yu, J Li, A Wang, H Xu, X Zhang

This work is licensed under a Creative Commons Attribution 4.0 International License.