An integrated hardware-in-loop approach for Lithium-ion batteries with single phase mechanically pumped fluid loop under space environment
DOI:
https://doi.org/10.21152/1750-9548.17.1.37Abstract
Excellent temperature characteristics of space Li-ion batteries can effectively improve the on-orbit operation to reduce the temperature fluctuation range and improve reliability. This paper adopts the hardware-in-the-loop approach, which organically combines simulation and experiment. This method not only effectively tests the thermal management system of the space batteries, but also simulates the characteristics of the system in real-time, and saves the high experimental cost. From the experiment, it is found that when the temperature of the inlet working fluid rises, the surface temperature rises significantly, and the maximum temperature difference is 4.9 °C. The steady-state settling time of the surface temperature also increases. When the flow rate of the inlet working fluid rises, the surface temperature decreases significantly, the maximum temperature difference is 3.9 °C, and the steady-state establishment time of the surface temperature extremely shortens. With the thermal load rise, the battery surface temperature increases obviously, the maximum temperature difference becomes 3.9°C, and the steady-state settling time of the surface temperature becomes longer. When the cycle remains the same and the charge/discharge times are dissimilar, the longer the discharge time, the faster the surface temperature rises, with a maximum increase of 34%.
References
Walker, W., Yayathi, S., Shaw, J., & Ardebili, H., Thermo-electrochemical evaluation of lithium-ion batteries for space applications. Journal of Power Sources, 2015, 298: p. 217-227. https://doi.org/10.1016/j.jpowsour.2015.08.054
Avanzini, G., de Angelis, E. L., & Giulietti, F., Optimal performance and sizing of a battery-powered aircraft. Aerospace Science and Technology, 2016, 59: p. 132-144. https://doi.org/10.1016/j.ast.2016.10.015
Song, Y., Peng, Y., & Liu, D., Model-Based Health Diagnosis for Lithium-Ion Battery Pack in Space Applications. IEEE Transactions on Industrial Electronics,2021, 68(12): p. 12375-12384. https://doi.org/10.1109/TIE.2020.3045745
Xin, Q., Xiao, J., Yang, T., Zhang, H., & Long, X. Thermal management of lithium-ion batteries under high ambient temperature and rapid discharging using composite PCM and liquid cooling. Applied Thermal Engineering, 2022, 210: p. 118230. https://doi.org/10.1016/j.applthermaleng.2022.118230
Chang, G., Cui, X., Li, Y., & Ji, Y. Effects of reciprocating liquid flow battery thermal management system on thermal characteristics and uniformity of large lithium‐ion battery pack. International Journal of Energy Research, 2020, 44(8): p. 6383-6395. https://doi.org/10.1002/er.5363
Ouyang, D., He, Y., Chen, M., Liu, J., & Wang, J., Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. Journal of Thermal Analysis and Calorimetry, 2017, 132: p. 65-75. https://doi.org/10.1007/s10973-017-6888-x
Dong, T., Peng, P., & Jiang, F., Numerical modeling and analysis of the thermal behavior of NCMlithium-ion batteries subjected to very high C-rate discharge/charge operations. International Journal of Heat and Mass Transfer, 2018, 117: p. 261-272. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.024
Panchal, S., Dincer, I., Agelin-Chaab, M., Fowler, M., & Fraser, R., Uneven temperature and voltage distributions due to rapid discharge rates and different boundary conditions for series-connected LiFePO4 batteries. International Communications in Heat and Mass Transfer, 2017, 81: p. 210-221. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.026
An, Z., Jia, L., Ding, Y., Dang, C., & Li, X., A review on Lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26: p. 391-412. https://doi.org/10.1007/s11630-017-0955-2
Deng, Y., Feng, C., Jiaqiang, E., Zhu, H., Chen, J., Wen, M., & Yin, H., Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Applied Thermal Engineering, 2018, 142: p. 10-29. https://doi.org/10.1016/j.applthermaleng.2018.06.043
Wang, S., Li, Y., Li, Y. Z., Mao, Y., Zhang, Y., Guo, W., & Zhong, M., A forced gas cooling circle packaging with liquid cooling plate for the thermal management of Li-ion batteries under space environment. Applied Thermal Engineering, 2017, 123: p. 929-939. https://doi.org/10.1016/j.applthermaleng.2017.05.159
Wang, J., Lu, S., Wang, Y., Ni, Y., & Zhang, S., Novel investigation strategy for mini-channel liquid-cooledbattery thermal management system. International Journal of Energy Research, 2019, 44(3): p. 1971-1985. https://doi.org/10.1002/er.5049
Fu, J., Xu, X., & Li, R., Battery module thermal management based on liquid coldplate with heat transfer enhanced fin. International Journal of Energy Research, 2019, 43(9): p. 4312-4321. https://doi.org/10.1002/er.4556
Zhao, J., Rao, Z., & Li, Y., Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management, 2015, 103: p. 157-165. https://doi.org/10.1016/j.enconman.2015.06.056
Kumbhar, P., Swaminathan, N., &Annabattula, R. K., Mesoscale analysis of Li-ion battery microstructure using sequential coupling of discrete element and finite element method. International Journal of Energy Research, 2022, 46(9): p. 12003-12025. https://doi.org/10.1002/er.7967
Dan, D., Yao, C., Zhang, Y., Zhang, H., Zeng, Z., & Xu, X., Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 2019, 162: p. 114183. https://doi.org/10.1016/j.applthermaleng.2019.114183
Li, K., Yan, J., Chen, H., & Wang, Q., Water cooling based strategy for lithium ion battery pack dynamic cycling for thermal management system. Applied Thermal Engineering, 2018, 132: p. 575-585. https://doi.org/10.1016/j.applthermaleng.2017.12.131
Chen, S., Peng, X., Bao, N., & Garg, A., A comprehensive analysis and optimization process for an integrated liquidcooling plate for a prismatic lithium-ion battery module. Applied Thermal Engineering, 2019, 156: p. 324-339. https://doi.org/10.1016/j.applthermaleng.2019.04.089
Malik, M., Dincer, I., Rosen, M. A., Mathew, M., & Fowler, M., Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling. Applied Thermal Engineering, vol. 129, pp. 472-481, 2018. https://doi.org/10.1016/j.applthermaleng.2017.10.029
Kong, D., Peng, R., Ping, P., Du, J., Chen, G., & Wen, J., A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures. Energy Conversion and Management, 2020, 204: p. 112280. https://doi.org/10.1016/j.enconman.2019.112280
Li, J., & Zhang, H., Thermal characteristics of power battery module with compositephase change material and external liquid cooling. International Journal of Heat and Mass Transfer, 2020, 156: p. 119820. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119820
Badar, J., Ali, S., Munir, H. M., Bhan, V., Bukhari, S. S. H., & Ro, J. S., Reconfigurable Power Quality Analyzer Applied to Hardware-in-Loop Test Bench. Energies, 2021, 14(16): p. 5134. https://doi.org/10.3390/en14165134
Geddam, K. K., &Devaraj, E., Real Time Hardware-in-Loop Implementation of LLC Resonant Converter at Worst Operating Point Based on Time Domain Analysis. Energies, 2022, 15(10): p. 3634. https://doi.org/10.3390/en15103634
He, J., Shen, M. J., Hybrid Force/Velocity Control for Simulating Contact Dynamics of Satellite Robots on a Hardware-in-the-Loop Simulator. IEEE Access, 2022, 10: p. 59277-59289. https://doi.org/10.1109/ACCESS.2022.3178952
Pugi, L., Galardi, E., Carcasci, C., Rindi, A., & Lucchesi, N., Preliminary design and validation of a Real Time model for hardware in the loop testing of bypass valve actuation system. Energy Conversion and Management, 2015, 92: p. 366-384. https://doi.org/10.1016/j.enconman.2014.12.061
Yan, Y., Liu, C., Ma, X., & Zhang, Y., Hardware-in-loop real-time simulation of electrical vehicle using multi-simulation platform based on data fusion approach. International Journal of Distributed Sensor Networks, 2019, 15(4): p. 1550147719841493. https://doi.org/10.1177/1550147719841493
Li, Y.Z., Zhu, S.J., Li, Y., Lu, Q., Temperature prediction and thermal boundary simulation using hardware-in-loop method for permanent magnet synchronous motors. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): p. 276-287. https://doi.org/10.1109/TMECH.2015.2443800
Han, J., Han, J., & Yu, S., Emulation of Thermal Energy Generation of Fuel Cell Stack via Hardware in Loop Simulation. Transactions of the Korean Society of Mechanical Engineers B, 2018, 42(11): p. 735-744. https://doi.org/10.3795/ksme-b.2018.42.11.735
Published
How to Cite
Issue
Section
Copyright (c) 2023 Y Bi, M Yu, H Xu, A Wang, L Gao, X Zhang, B Feng, J Wang

This work is licensed under a Creative Commons Attribution 4.0 International License.