Effect of Buffer Layer selection on Perovskite-Based Solar Cell Efficiency: A Simulation Study Using OghmaNano Software
DOI:
https://doi.org/10.21152/1750-9548.17.2.135Abstract
This simulation paper investigates the impact of incorporating three different buffer layers (CZTSE, CZTS, and CZS) on the efficiency of two different types of perovskite absorber layers (MAPbCl3 and MAGeI3) in a solar cell using the OghmaNano software. The absorber thickness is optimized for maximum efficiency, and then each type of buffer layer is optimized for further efficiency gains. Results show that MAGeI3 has higher efficiency values compared to MAPbCl3. Moreover, the CZS buffer layer demonstrates a remarkable increase in efficiency compared to CZTS and CZTSe buffer layers, with a difference of up to 23.35% for MAPbCl3 and 6.8% for MAGeI3. This study highlights the importance of buffer layer selection and optimization for achieving higher solar cell efficiency.
References
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 131(17), https://doi.org/10.1021/ja809598r
National Renewable Energy Laboratory (NREL). (2019). Best research-cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
Umari, P., Mosconi, E., & De Angelis, F. (2014). Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Scientific Reports, 4(1), 4467. https://doi.org/10.1038/srep04467
Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y., & Wei, S.-H. (2015). Halide perovskite materials for solar cells: A theoretical review. Journal of Materials Chemistry A, 3(20), 8926-8942. https://doi.org/10.1039/C4TA05619G
Stranks, S. D., Snaith, H. J., Gracia-Espino, E., Leijtens, T., Mellor, C. J., LeLong, R., ... & Giustino, F. (2013). Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156), 341-344. https://doi.org/10.1126/science.1243982
Jin, H., Chen, J., & Snaith, H. J. (2020). It's a trap! On the nature of localized states and charge trapping in lead halide perovskites. Materials Horizons, 7(2), 397-410. https://doi.org/10.1039/C9MH01557F
Giustino, F., & Snaith, H. J. (2016). Toward lead-free perovskite solar cells. ACS Energy Letters, 1(6), 1233-1240. https://doi.org/10.1021/acsenergylett.6b00499
Ohara, K., Yamada, T., Tahara, H., Aharen, T., Hirori, H., Suzuura, H., & Kanemitsu, Y. (2019). Excitonic enhancement of optical nonlinearities in perovskite CH3NH3PbCl3 single crystals Phys. Rev. Materials, 3(11), 111601(R). https://doi.org/10.1103/PhysRevMaterials.3.111601
Saparov, B., & Mitzi, D. B. (2016). Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews, 116(7), 4558-4596. https://doi.org/10.1021/acs.chemrev.5b00715
Stoumpos, C. C., Frazer, L., Clark, D. J., Kim, Y. S., Rhim, S. H., Freeman, A. J., ... Kanatzidis, M. G. (2015). Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. Journal of the American Chemical Society, 137(17), 6804-6819. https://doi.org/10.1021/jacs.5b01025
Krishnamoorthy, T., Ding, H., Yan, C., Leong, W. L., Baikie, T., Zhang, Z., ... Mhaisalkar, S. G. (2015). Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 3(47), https://doi.org/10.1039/C5TA05741H
Nogay, G., Sahli, F., Werner, J., Monnard, R., Boccard, M., Despeisse, M., ... Ballif, C. (2019). 25.1%-Efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Letters, 4(4), 844-845. https://doi.org/10.1021/acsenergylett.9b00300
Kanoun, A. A., Kanoun, M. B., Merad, A. E., & Goumri-Said, S. (2019). Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Solar Energy, 182, 237-244. https://doi.org/10.1016/j.solener.2019.03.067
Singh, R., Aluicio-Sarduy, E., Kan, Z., Ye, T., MacKenzie, R. C. I., & Keivanidis, P. E. (2014). Fullerene-free organic solar cells with an efficiency of 3.7% based on a low-cost geometrically planar perylene diimide monomer. Journal of Materials Chemistry A, 2(35), 14348-14353. https://doi.org/10.1039/C4TA02851A
Sims, L., Hörmann, U., Hanfland, R., MacKenzie, R. C., Kogler, F. R., Steim, R., ... & Schilinsky, P. (2014). Investigation of the s-shape caused by the hole selective layer in bulk heterojunction solar cells. Organic Electronics, 15(11), 2862-2867. https://doi.org/10.1016/j.orgel.2014.08.010
Gao, Y., MacKenzie, R. C., Liu, Y., Xu, B., Van Loosdrecht, P. H., & Tian, W. (2015). Engineering ultra long charge carrier lifetimes in organic electronic devices at room temperature. Advanced Materials Interfaces, 2(4), 1400555. https://doi.org/10.1002/admi.201400555
Le Corre, V. M., et al. (2019). Charge transport layers limiting the efficiency of perovskite solar cells: How to optimize conductivity, doping, and thickness. ACS Applied Energy Materials, 2(9), 6280-6287. https://doi.org/10.1021/acsaem.9b00856
Sha, W. E., Zhang, H., Wang, Z. S., Zhu, H. L., Ren, X., Lin, F., ... & Choy, W. C. (2018). Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model. Advanced energy materials, 8(8), 1701586. https://doi.org/10.1002/aenm.201701586
Cai, B., Yang, X., Jiang, X., Yu, Z., Hagfeldt, A., & Sun, L. (2019). Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3{,}2-b]carbazole dopant-free hole transporting material by improving its spatial configuration. Journal of Materials Chemistry A, 7(24), 14835-14841. https://doi.org/10.1039/C9TA04166D
Peng, S. H., Huang, T. W., Gollavelli, G., & Hsu, C. S. (2017). Thiophene and diketopyrrolopyrrole based conjugated polymers as efficient alternatives to spiro-OMeTAD in perovskite solar cells as hole transporting layers. Journal of Materials Chemistry C, 5(21), 5193-5198. http://dx.doi.org/10.1039/C7TC00966F
Kanoun, A. A., Kanoun, M. B., Merad, A. E., & Goumri-Said, S. (2019). Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Solar Energy, 182, 237-244. https://doi.org/10.1016/j.solener.2019.02.041
Abdelaziz, S., Zekry, A., Shaker, A., & Abouelatta, M. (2020). Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Optical Materials, 101, 109738. https://doi.org/10.1016/j.optmat.2020.109738
Adhikari, K. R., Gurung, S., Bhattarai, B. K., & Soucase, B. M. (2016). Comparative study on MAPbI3 based solar cells using different electron transporting materials. physica status solidi (c), 13(1), 13-17, https://doi.org/10.1002/pssc.201510078
Filippetti, A., & Mattoni, A. (2014). Hybrid perovskites for photovoltaics: Insights from first principles. Physical Review B, 89(12), 125203. https://doi.org/10.1103/PhysRevB.89.125203
Hou, F., Su, Z., Jin, F., Yan, X., Wang, L., Zhao, H., ... & Li, W. (2015). Efficient and stable planar heterojunction perovskite solar cells with an MoO 3/PEDOT: PSS hole transporting layer. Nanoscale, 7(21), 9427-9432. http://dx.doi.org/10.1039/C5NR01864A
Qiu, X., Cao, B., Yuan, S., Chen, X., Qiu, Z., Jiang, Y., ... & Kanatzidis, M. G. (2017). From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Materials and Solar Cells, 159, 227-234. https://doi.org/10.1016/j.solmat.2016.09.022
Liu, M., Qi, Y., Zhao, L., Chen, D., Zhou, Y., Zhou, H., ... & Li, F. (2018). Matrix metalloproteinase-14 induces epithelial-to-mesenchymal transition in synovial sarcoma. Human Pathology, 80, 201-209. https://doi.org/10.1016/j.humpath.2017.12.031
Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V., & Huang, L. (2015). Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Communications, 6(1), 7471. https://doi.org/10.1038/ncomms8471
Leijtens, X. (2013). A generic approach to InP-based photonic ICs. 2013 IEEE Photonics Conference, Bellevue, WA, USA, 1-2. https://doi.org/10.1109/IPCon.2013.6656395
Kim, K. B., Kim, M., Lee, H. C., Park, S. W., & Jeon, C. W. (2017). Copper indium gallium selenide (CIGS) solar cell devices on steel substrates coated with thick SiO2-based insulating material. Materials Research Bulletin, 85, 168-175. https://doi.org/10.1016/j.materresbull.2016.09.018
Kapadnis, R. S., Bansode, S. B., Supekar, A. T., Bhujbal, P. K., Kale, S. S., Jadkar, S. R., & Pathan, H. M. (2020). Cadmium telluride/cadmium sulfide thin films solar cells: a review. ES Energy & Environment, 10(2), 3-12. https://dx.doi.org/10.30919/esee8c706
Yao, J., Chen, Q., Zhang, C., Zhang, Z. G., & Li, Y. (2022). Perylene‐diimide‐based cathode interlayer materials for high performance organic solar cells. SusMat, 2(3), 243-263. https://doi.org/10.1002/sus2.50
Yan, C., Barlow, S., Wang, Z., Yan, H., Jen, A. K. Y., Marder, S. R., & Zhan, X. (2018). Non-fullerene acceptors for organic solar cells. Nature Reviews Materials, 3(3), 1-19. https://doi.org/10.1038/natrevmats.2018.3
Chen, D., Nakahara, A., Wei, D., Nordlund, D., & Russell, T. P. (2011). P3HT/PCBM bulk heterojunction organic photovoltaics: Correlating efficiency and morphology. Nano Letters, 11(2), 561-567. https://doi.org/10.1021/nl103482n
Xu, L., Zhou, P., Wu, Y.-H., Xu, J., Wu, Y., & Xu, X.-W. (2019). Insight into adaptation mechanisms of marine bacterioplankton from comparative genomic analysis of the genus Pseudohongiella. Deep Sea Research Part II: Topical Studies in Oceanography, 167, 62-69. https://doi.org/10.1016/j.dsr2.2019.06.009
Xiong, L., Guo, Y., Wen, J., Liu, H., Yang, G., Qin, P., & Fang, G. (2018). Review on the application of SnO2 in perovskite solar cells. Advanced Functional Materials, 28(35), 1802757, https://doi.org/10.1002/adfm.201802757
Jiang, Q., Zhang, X., & You, J. (2018). SnO2: a wonderful electron transport layer for perovskite solar cells. Small, 14(31), 1801154. https://doi.org/10.1002/smll.201801154
Yang, G., Li, X., Zhao, B., Liu, C., Zhang, T., Li, Z., ... & Li, X. (2022). Embedding SnO2 thin shell protected Ag nanowires in SnO2 ETL to enhance the performance of perovskite solar cells. Langmuir, 38(21), 6752-6760. https://doi.org/10.1021/acs.langmuir.2c00792
Xu, Z., Teo, S. H., Gao, L., Guo, Z., Kamata, Y., Hayase, S., & Ma, T. (2019). La-doped SnO2 as ETL for efficient planar-structure hybrid perovskite solar cells. Organic Electronics, 73, 62-68. https://doi.org/10.1016/j.orgel.2019.03.053
Ali, N., Hussain, A., Ahmed, R., Wang, M. K., Zhao, C., Haq, B. U., & Fu, Y. Q. (2016). Advances in nanostructured thin film materials for solar cell applications. Renewable and Sustainable Energy Reviews, 59, 726-737. https://doi.org/10.1016/j.rser.2015.12.268
Grimm, A., Klenk, R., Klaer, J., Lauermann, I., Meeder, A., Voigt, S., & Neisser, A. (2009). CuInS2-based thin film solar cells with sputtered (Zn, Mg) O buffer. Thin Solid Films, 518(4), 1157-1159. https://doi.org/10.1016/j.tsf.2009.03.226
Innocenti, M., Becucci, L., Bencistà, I., Carretti, E., Cinotti, S., Dei, L., ... & Foresti, M. L. (2013). Electrochemical growth of Cu–Zn sulfides. Journal of Electroanalytical Chemistry, 710, 17-21. https://doi.org/10.1016/j.jelechem.2013.01.024
Minbashi, M., Omrani, M. K., Memarian, N., & Kim, D. H. (2017). Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell. Current Applied Physics, 17(10), 1238-1243. https://doi.org/10.1016/j.cap.2017.06.003
Pal, K., Singh, P., Bhaduri, A., & Thapa, K. B. (2019). Current challenges and future prospects for a highly efficient (> 20%) kesterite CZTS solar cell: A review. Solar Energy Materials and Solar Cells, 196, 138-156. https://doi.org/10.1016/j.solmat.2019.03.001
Huang, J., Yang, Y., Xue, S., Yang, B., Liu, S., & Shen, J. (1997). Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks. Applied Physics Letters, 70(18), 2335-2337. https://doi.org/10.1063/1.118866
Diamond, A. M., Corbellini, L., Balasubramaniam, K. R., Chen, S., Wang, S., Matthews, T. S., ... & Ager, J. W. (2012). Copper‐alloyed ZnS as ap‐type transparent conducting material. physica status solidi (a), 209(11), 2101-2107. https://doi.org/10.1002/pssa.201228181
Uhuegbu, C. C., & Babatunde, E. B. (2010). Spectral analysis of copper zinc sulphide ternary thin film grown by solution growth technique. American Journal of Scientific and Industrial Research, 1(3), 397-400. https://doi.org/10.5251/ajsir.2010.1.3.397.400
Yang, K., Nakashima, Y., & Ichimura, M. (2011). Electrochemical deposition of CuxS and CuxZnyS thin films with p-type conduction and photosensitivity. Journal of The Electrochemical Society, 159(3), H250. https://doi.org/10.1149/2.042203jes
Sreejith, M. S., Deepu, D. R., Kartha, C. S., Rajeevkumar, K., & Vijayakumar, K. P. (2014). Tuning the properties of sprayed CuZnS films for fabrication of solar cell. Applied physics letters, 105(20), 202107. https://doi.org/10.1063/1.4902224
Emegha, J. , Olofinjana, B. , Ukhurebor, K. , Aigbe, U. , Azi, S. & Eleruja, M. (2022). Effect of Deposition Temperature on the Properties of Copper-Zinc Sulphide Thin Films using Mixed Copper and Zinc Dithiocarbamate Precursors . Gazi University Journal of Science , 35 (4) , 1556-1570. https://doi.org/10.35378/gujs.887025
Published
How to Cite
Issue
Section
Copyright (c) 2023 B Mourched, S Sawaya, M Abdallah, N Abboud
This work is licensed under a Creative Commons Attribution 4.0 International License.