Numerical Simulation Research on Precooling Characteristics of LNG Discharge Pipeline
DOI:
https://doi.org/10.21152/1750-9548.14.3.273Abstract
The low-temperature fluid flowing into the LNG unloading pipeline will cause violent heat exchange phenomenon, resulting in damage to the pipeline and affecting normal operation. Therefore, pre-cooling treatment is required in advance. Considering the fluid-solid heat transfer and fluid flow characteristics comprehensively, multi-physics coupling simulation study on the pre-cooling problem of the LNG discharge pipe with a π-shaped elbow is carried out. The analysis from BOG and LNG pre-cooling processes respectively shows that: the fluid with low temperature and high density is mainly concentrated at the bottom of the pipe and outside the bend, the wall temperature has a sudden drop at the bend, and there is a large temperature difference between the gas side and the liquid side wall surface. Mixed convection heat exchange mainly occurs in the tube. There will be a small area of natural convection-dominated heat exchange state in the elbow and the downstream pipe section.
References
Astbury G R. A review of the properties and hazards of some alternative fuels [J]. Process Safety and Environmental Protection, 2008, 86(6): 397-414. DOI: http://dx.doi.org/10.1016/j.psep.2008.05.001
Chamberlain GA. Management of large LNG hazardous, 23rd World gas conference, Amsterdam, 2006.
Shukri T. LNG technology selection. Hydro Eng 2004.
Parikh J, Biswas C R D, Singh C, et al. Natural Gas requirement by fertilizer sector in India [J]. Energy, 2009, 34(8): 954-961.
Lin W, Zhang N, Gu A. LNG (liquefied natural gas): A necessary part in China"s future energy infrastructure [J]. Energy, 2010, 35(11): 4383-4391. DOI: http://dx.doi.org/10.1016/j.energy.2009.04.036
Vaenem E, Antao P, Ostvik I, Francisco DC. Analyzing the risk of LNG operations [J]. Reliab Eng Syst Safety 2008; 93: 1328–1344.
Kumar S, Kwon HT, Choi KH, Cho JH, Lim W, Moon I. Current status and future projections of LNG demand and supplies: a global prospective [J]. Energy Policy 2011, 39: 4097–4104.
Paulina Jaramillo, W M G, H S M. Comparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation[J]. Environmental Science & Technology, 2007, 41(17): 6290-6296.
Chu YQ, Hicks LC, Lu NX. China’s first LNG import terminal. In: The 14th International Conference & Exhibition on Liquefied Natural Gas, Doha, Qatar: GTI/IGU/IIR; 2004.
Lu Chao. Simulation and Analysis of LNG Transportation Pipeline Pre-cooling Process[D]. Shanghai Jiaotong University, 2013.
Ji Junyi. Research on the pre-cooling law of large-diameter pipeline at LNG receiving station[D]. China University of Petroleum (East China), 2016.
Chen Taoqiang, Huangfu Lixia, Gao Yifeng, et al. Simulation optimization of precooling process of LNG discharge pipeline[J]. Standard and Quality of China Petroleum and Chemical Industry, 2019, 39(11): 235-236.
Burke, J.C., Byrnes, W.R., Post, A.H., Ruccia, F.E. 1960, Pressure Cooldown of Cryogenic Transfer Lines [J], Advances in Cryogenic Engineering, 1960, 378-394.
Hendricks R C, Graham R W, Hau Y Y, et al. Experimental Heat Transfer and Pressure Drop of Film Boiling Liquid Hydrogen Flowing Through a Heated Tube[J]. Advances in cryogenic engineering, 1961, 6: 65. DOI: http://dx.doi.org/10.1007/978-1-4757-0534-8_54
Bronson J C, Edeskuty F J, Fretwell J H, et al. Problems in Cool-Down of Cryogenic Systems[J]. Advances in cryogenic engineering, 1962, Vol: 7. DOI: http://dx.doi.org/10.1007/978-1-4757-0531-7_25
Chi J W H, Vetere A M. Two-Phase Flow During Transient Boiling of Hydrogen and Determination of Nonequilibrium Vapor Fractions[J]. Advances in cryogenic engineering, 1964, 9: 243-253. DOI: http://dx.doi.org/10.1007/978-1-4757-0525-6_29
Brennan J A, Smith R V, Steward W G. Cooldown Transients in Cryogenic Transfer Lines[J]. Advances in cryogenic engineering, 1969, 15. DOI: http://dx.doi.org/10.1007/978-1-4757-0513-3_43
Liao, J., Yuan, K., Mei, R., Klausner, J. F., Chung, J. Cryogenic Chilldown Model for Stratified Flow Inside a Pipe[C]. Heat Transfer, 2005. DOI: http://dx.doi.org/10.1115/HT2005-72651
Shaeffer R, Hu H, Chung J N. An experimental study on liquid nitrogen pipe chilldown and heat transfer with pulse flows[J]. International Journal of Heat and Mass Transfer, 2013, 67: 955-966. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.037
Yuan K, Ji Y, Chung J N, et al. Cryogenic Boiling and Two-Phase Flow during Pipe Chilldown in Earth and Reduced Gravity[J]. Journal of Low Temperature Physics, 2008, 150(1-2): 101-122. DOI: http://dx.doi.org/10.1007/s10909-007-9521-8
Brennan J A, Smith R V, Steward W G. Cooldown Transients in Cryogenic Transfer Lines[J]. Advances in cryogenic engineering, 1969, 15. DOI: http://dx.doi.org/10.1007/978-1-4757-0513-3_43
Klimenko V V, Fyodorov M V, Fomichyov Y A. Channel orientation and geometry influence on heat transfer with two-phase forced flow of nitrogen[J]. Cryogenics, 1989, 29(1): 31-36. DOI: http://dx.doi.org/10.1016/0011-2275(89)90008-8
Published
How to Cite
Issue
Section
Copyright (c) 2020 W Chunsheng, L Zejun, C Mingyu, S Qiji

This work is licensed under a Creative Commons Attribution 4.0 International License.