Euler-Lagrange coupling for porous parachute canopy analysis

Authors

  • N Aquelet
  • B Tutt

DOI:

https://doi.org/10.1260/175095407780130517

Abstract

We apply a new Euler-Lagrange coupling method to 3-D parachute problems, which generally involve fluid-structure interactions between a flexible, elastic, porous parachute canopy and a high-speed airflow. The method presented couples an Arbitrary Lagrange Euler formulation for the fluid dynamics and an updated Lagrangian finite element formulation for the parachute canopy. The Euler-Lagrange coupling handles fluid-structure interaction without matching the fluid and structure meshes. In order to take account of the effect of the parachute permeability, this coupling computes interaction forces based on the Ergun porous flow model. This paper provides validations for the technique when considering parachute applications and discusses the interest of this development to the parachute designer. 

References

Spahr, H.R., Wolf, D.E., Theoretical analysis of wake-induced parachute collapse, 7th AIAA Aerodyn. Decelerator and Balloon Technol. Conf., 1981, pp.81-1922. https://doi.org/10.2514/6.1981-1922

Stein, K., Benney, R., Kalro, V., Tezduyar, T.E., Leonard, J., Accorsi, M., Parachute fluid-structure interactions: 3-D Computation, Computer Methods in Applied Mechanics and Engineering, 2000, 190, pp.373-386. https://doi.org/10.1016/s0045-7825(00)00208-5

Stein, K., Benney, R., Tezduyar, T.E., Potvin, J., Fluid-structure interactions of a cross parachute: Numerical simulation, Computer Methods in Applied Mechanics and Engineering, 2001, 191, pp.673-687. https://doi.org/10.1016/s0045-7825(01)00312-7

Stein, K., Benney, R., Tezduyar, T.E., Leonard, J.W., Accorsi, M., Fluid-structure interactions of a round parachute: Modeling and simulation techniques, Journal of Aircraft, 2001, 38, pp.800-808. https://doi.org/10.2514/2.2864

Rosenhead, L., The formation of vortices from a surface of discontinuity, Proc. Royal Society, 1931, 134, pp.170-192.

Chorin, A.J., Numerical study of slightly viscous flow, J. Fluid Mechanics, 1973, 57, pp.785-796. https://doi.org/10.1017/s0022112073002016

Peskin, C.S., The immersed boundary method, Acta Numerica, 2002, 11, pp. 479-517. https://doi.org/10.1017/s0962492902000077

Kim, Y., Peskin, C.S., 2-D Parachute Simulation by the Immersed Boundary Method, to appear in SIAM Journal on Scientific Computing, 2006.

Kim, Y., Peskin, C.S., 3-D Parachute Simulation by the Immersed Boundary Method, submitted to SISC.

Benson, D., Eulerian-Lagrangian Coupling in Finite Element calculations with applications to machining, Emerging Technology in Fluids, Structures, and Fluid-Structure Interactions - 2004, Volume 2, July 25-29 2004, San Diego, California USA, PVP-Vol.485-2. https://doi.org/10.1115/pvp2004-2860

Aquelet, N., Souli, M., Olovsson L., Euler Lagrange Coupling with Damping Effects: Application to Slamming Problem, Comput. Methods Appl. Mech. Engrg., 2005, CMA5874, 195(1-3), pp.110-132. https://doi.org/10.1016/j.cma.2005.01.010

Strickland, J.H., Prediction method for unsteady axisymmetric flow over parachutes, J. Aircr., 1994, 31(3), pp.637-643. https://doi.org/10.2514/3.46542

Higuchi, H., Balligand, H., Strickland, J.H., Numerical and experimental investigations of the unsteady axisymmetric flow over a disk, Vortex Methods for Engineering Applications, Albuquerque. NM, 1995, pp.219-291.

Sarpkaya, T., Lindsey, P.J., Unsteady flow about porous cambered plate, J. Aircr., 1991, 28(8), pp.502-508. https://doi.org/10.2514/3.46055

Sundberg, W. D., PRONTO2D/VPARA Coupling, International Sandia National Laboratories Memorandum,W. P. Wolfe, January, 1999.

Taylor, L.M., Flanagan, D.P., PRONTO 2D, A Two-Dimensional Transient Solid Dynamics Program, Sandia National Laboratories, Albuquerque, New Mexico, March 1987, SAND86-0594. https://doi.org/10.2172/6671798

Strickland, J. H., Homicz, G. F., Porter, V. L., Gossler, A. A., A 3-D Vortex Code for Parachute Flow Predictions: VIPAR Version 1.0, Sandia National Laboratories, Albuquerque, New Mexico, July 2002, SAND2002-2174. https://doi.org/10.2172/808589

Donea, J., An arbitrary Lagrangian-Eulerian finite element method for transient fluid-structure interactions. Computational Mechanics, 1982, 33 pp.689-723. https://doi.org/10.1016/0045-7825(82)90128-1

Farhat, C., Lesoinne, M., Maman, N. , Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int. Journal for Num. Meth. In Fluids, 1995, 21, pp.807-835. https://doi.org/10.1002/fld.1650211004

Cruz, J. R., Mineck, R. E., Keller, D. F., Bobskill, M. V., Wind Tunnel Testing of Various Disk-Gap-Band Parachutes, 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Monterey, CA, May 19-22, 2003, AIAA 2003-2129. https://doi.org/10.2514/6.2003-2129

Ergun, S., Fluid Flow Through Packed, Chem. Eng. Prog., 1952, 48(2), pp.89-94.

Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comp. Meth. Appl. Mech. Engrg., 1992, 99(2), pp.235-394.

Belytschko, T., Lin, J., Tsay, C.S., Explicit algorithms for nonlinear dynamics of shells, Comp. Meth. Appl. Mech. Engrg., 1984, 42, pp.225-251.

Hughes, T.J.R., Liu, W.K., Zimmerman, T.K., Lagrangian Eulerian finite element formulation for viscous flows, Comp. Meth. Appl. Mech. Engrg., 1981, 21, pp.329-349. https://doi.org/10.1016/0045-7825(81)90049-9

Souli, M., Ouahsine, A., Lewin, L., ALE and Fluid-Structure Interaction problems, Comp. Meth. Appl. Mech. Engrg., 2000, 190, pp.659-675. https://doi.org/10.1016/s0045-7825(99)00432-6

Belytschko, T., Liu, W.K., Moran, B., Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, LTD, 2001.

Van Leer, B., Towards the Ultimate Conservative Difference Scheme.IV. A New Approach to Numerical Convection, Journal Computational Physics, 1977, 167, pp.276-299. https://doi.org/10.1016/0021-9991(77)90095-x

Hughes, T.J.R., Liu, W. K., Nonlinear Finite Element Analysis: Part I. Two-Dimensional Shells, Comp. Meth. Appl. Mech. Engrg., 1981, 27, pp.167-181.

Knacke, T.W., Parachute Recovery Systems Design Manual, Para-Publishing, Santa Barbara, CA, 1992.

Belytschko, T., Neal, M.O., Contact-impact by the pinball algorithm with penalty, projection, and Lagrangian methods, Proc. Symp. on Computational Techniques for Impact, Penetration, and Performation of Solids, ASME, New York, NY, 1989, AMD-Vol. 103, pp.97-140.

Tutt, B., The use of LS-DYNA to Assess the Performance of Airborne Systems North America Candidate ATPS Main Parachutes, AIAA Aerodynamic Decelerator Systems Conference, 2005. https://doi.org/10.2514/6.2005-1609

Published

2007-03-31

How to Cite

Aquelet, N., & Tutt, B. (2007). Euler-Lagrange coupling for porous parachute canopy analysis. The International Journal of Multiphysics, 1(1), 53-68. https://doi.org/10.1260/175095407780130517

Issue

Section

Articles