On the derivation of SPH schemes for shocks through inhomogeneous media
DOI:
https://doi.org/10.1260/1750-9548.9.2.83Abstract
Smoothed Particle Hydrodynamics (SPH) is typically used for the simulation of shock propagation through solid media, commonly observed during hypervelocity impacts. Although schemes for impacts into monolithic structures have been studied using SPH, problems occur when multimaterial structures are considered. This study begins from a variational framework and builds schemes for multiphase compressible problems, coming from different density estimates. Algorithmic details are discussed and results are compared upon three one-dimensional Riemann problems of known behavior.
References
T. Belytschko, Y. Guo, W. K. Liu, and S. P. Xiao. A unified stability analysis of meshless particle methods. International Journal for Numerical Methods in Engineering, 48(9):1359–1400, 2000. https://doi.org/10.1002/1097-0207(20000730)48:9<1359::aid-nme829>3.0.co;2-u
V.L. Berdichevsky. Variational Principles of Continuum Mechanics - I. Fundamentals. Springer-Verlag, Berlin-Heidelberg, 1st edition, 2009.
J. Bonet, S. Kulasegaram, M.X. Rodriguez-Paz, and M. Profit. Variational formulation for the smooth particle hydrodynamics (sph) simulation of fluid and solid problems. Computer Methods in Applied Mechanics and Engineering, 193(12–14):1245–1256, 2004. Meshfree Methods: Recent Advances and New Applications. https://doi.org/10.1016/j.cma.2003.12.018
S. Borve and D.J. Price. Hydrodynamical instabilities in compressible fluids using sph. Proceedings of the 4th SPHERIC workshop, May 26–29, Hannover, 2009.
J. Campbell, R. Vignjevic, and L. Libersky. A contact algorithm for smoothed particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 184(1):49–65, 2000. https://doi.org/10.1016/s0045-7825(99)00442-9
R.A. Clegg G.E. Fairlie S.J. Hiermaier C.J. Hayhurst, C.H. Livingstone and M. Lambert. Numerical simulation of hypervelocity impacts on aluminum and nextel/kevlar whipple shields. Hypervelocity Shielding Workshop, 8-11 March 1998, Galveston, Texas, 1998.
R.A. Clegg, D.M. White, W. Riedel, and W. Harwick. Hypervelocity impact damage prediction in composites: Part i—material model and characterisation. International Journal ofImpact Engineering, 33(1–12):190–200, 2006. Hypervelocity Impact Proceedings of the 2005 Symposium. https://doi.org/10.1016/j.ijimpeng.2006.09.055
A. Colagrossi and M. Landrini. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 191(2):448–475, 2003. https://doi.org/10.1016/s0021-9991(03)00324-3
L. Davison. Fundamentals of Shock Wave Propagation in Solids. Springer-Verlag, Berlin Heidelberg, 2008.
Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: Applications and algorithms. SIAM Review, 41(4):637–676, 1999. https://doi.org/10.1137/s0036144599352836
N. Grenier, M. Antuono, A. Colagrossi, D. Le Touze, and B. Alessandrini. An hamiltonian interface sph formulation for multi-fluid and free surface flows. Journal of Computational Physics, 228(22):8380–8393, 2009. https://doi.org/10.1016/j.jcp.2009.08.009
S. Hiermaier, D. Konke, A.J. Stilp, and K. Thoma. Computational simulation of the hypervelocity impact of al-spheres on thin plates of different materials. International Journal of Impact Engineering, 20(1–5):363–374, 1997. Hypervelocity Impact Proceedings of the 1996 Symposium. https://doi.org/10.1016/s0734-743x(97)87507-0
S.J. Hiermaier. Structures Under Crash and Impact - Continuum Mechanics, Discretization and Experimental Characterization. Springer Science + Business Media, LLC, New York, 1st edition, 2008.
X. Y. Hu and N. A. Adams. A multi-phase sph method for macroscopic and mesoscopic flows. J. Comput. Phys., 213(2):844–861, April 2006. https://doi.org/10.1016/j.jcp.2005.09.001
G.R. Johnson. Artificial viscosity effects for {SPH} impact computations. International Journal of Impact Engineering, 18(5):477–488, 1996. https://doi.org/10.1016/0734-743x(95)00051-b
L.D. Libersky, A.G. Petschek, T.C. Carney, J.R. Hipp, and F.A. Allahdadi. High strain lagrangian hydrodynamics: A three-dimensional sph code for dynamic material response. Journal of Computational Physics, 109(1):67–75, 1993. https://doi.org/10.1006/jcph.1993.1199
L.D. Libersky, P.W. Randles, T.C. Carney, and D.L. Dickinson. Recent improvements in {SPH} modeling of hypervelocity impact. International Journal ofImpact Engineering, 20(6–10):525–532, 1997. https://doi.org/10.1016/s0734-743x(97)87441-6
G.R. Liu, C.E. Zhou, and G.Y. Wang. An implementation of the smoothed particle hydrodynamics for hypervelocity impacts and penetration to layered composites. International Journal of Computational Methods, 10(3):1350056, 2013. https://doi.org/10.1142/s0219876213500564
J.J. Monaghan. Sph and riemann solvers. Journal of Computational Physics, 136(2):298–307, 1997. https://doi.org/10.1006/jcph.1997.5732
J.J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics, 68(8):1703, 2005.
J.J. Monaghan and R.A Gingold. Shock simulation by the particle method sph. Journal of Computational Physics, 52(2):374–389, 1983. https://doi.org/10.1016/0021-9991(83)90036-0
J.J. Monaghan and A. Rafiee. A simple sph algorithm for multi-fluid flow with high densityratios. International Journal for Numerical Methods in Fluids, 71(5):537–561, 2013. https://doi.org/10.1002/fld.3671
D.J. Price. Modelling discontinuities and kelvin-helmholtz instabilities in sph. Journal of Computational Physics, 227(24):10040–10057, 2008. https://doi.org/10.1016/j.jcp.2008.08.011
D.J. Price. Smoothed particle hydrodynamics and magnetohydrodynamics. Journal of Computational Physics, 231(3):759–794, 2012. Special Issue: Computational Plasma Physics. https://doi.org/10.1016/j.jcp.2010.12.011
P.W. Randles and L.D. Libersky. Smoothed particle hydrodynamics: Some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering, 139(1–4):375–408, 1996. https://doi.org/10.1016/s0045-7825(96)01090-0
K. Shintate and H. Sekine. Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved sph method. Composites Part A: Applied Science and Manufacturing, 35(6):683–692, 2004. https://doi.org/10.1016/j.compositesa.2004.02.011
L.G. Sigalotti and H. Lopez. Adaptive kernel estimation and {SPH} tensile instability. Computers Mathematics with Applications, 55(1):23–50, 2008. https://doi.org/10.1016/j.camwa.2007.03.007
G.A. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1):1–31, 1978. https://doi.org/10.1016/0021-9991(78)90023-2
E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical Introduction. Springer-Verlag, Berlin-Heidelberg, 3rd edition, 2009.
M. Wicklein, S. Ryan, D.M. White, and R.A. Clegg. Hypervelocity impact on cfrp: Testing, material modelling, and numerical simulation. International Journal of Impact Engineering, 35(12):1861–1869, 2008. Hypervelocity Impact Proceedings of the 2007 Symposium. https://doi.org/10.1016/j.ijimpeng.2008.07.015
J.A. Zukas. Introduction to Hydrocodes. Elsevier Ltd., Amsterdam, 1st edition, 2004.
Published
How to Cite
Issue
Section
Copyright (c) 2015 I Zisis, B Linden, C Giannopapa, B Koren

This work is licensed under a Creative Commons Attribution 4.0 International License.