About influence of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in heterobipolar transistors
DOI:
https://doi.org/10.1260/1750-9548.9.2.109Abstract
In this paper we introduce an approach to manufacture a heterobipolar transistors. Framework this approach we consider doping by diffusion or by ion implantation of required parts of a heterostructure with special configuration and optimization of annealing of dopant and/or radiation defects. In this case one have possibility to manufacture bipolar transistors, which include into itself p-n-junctions with higher sharpness and smaller dimensions. We also consider influence of presents of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in the considered transistors. An approach to decrease value of mismatch-induced stress has been considered.
References
V. I. Lachin and N. S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001.
A. Polishscuk. Modern Electronics. Issue 12. P. 8–11 (2004).
G. Volovich. Modern Electronics. Issue 2. P. 10–17 (2006).
A. Kerentsev, V. Lanin, Power Electronics. Issue 1. P. 34 (2008).
A. O. Ageev, A. E. Belyaev, N. S. Boltovets, V. N. Ivanov, R. V. Konakova, Ya. Ya. Kudrik, P. M. Litvin, V. V. Milenin, A. V. Sachenko. Semiconductors. Vol. 43 (7). P. 897–903 (2009).
Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. Semiconductors. Vol. 43 (7). P. 971–974 (2009).
O. V. Alexandrov, A. O. Zakhar’in, N. A. Sobolev, E. I. Shek, M. M. Makoviychuk, E. O. Parshin. Semiconductors. Vol. 32 (9). P. 1029–1032 (1998).
I. B. Ermolovich, V. V. Milenin, R. A. Red’ko, S. M. Red’ko. Semiconductors. Vol. 43 (8). P. 1016–1020 (2009).
P. Sinsermsuksakul, K. Hartman, S. B. Kim, J. Heo, L. Sun, H. H. Park, R. Chakraborty, T. Buonassisi, R. G. Gordon. Appl. Phys. Lett. Vol. 102 (5). P. 053901–053905 (2013). https://doi.org/10.1063/1.4789855
J. G. Reynolds, C. L. Reynolds, Jr. A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, D. E. Aspnes. Appl. Phys. Lett. Vol. 102 (15). P. 152114–152118 (2013). https://doi.org/10.1063/1.4802753
Y. W. Zhang, A. F. Bower. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273–2297 (1999).
L. D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity ) (Physmatlit, Moscow, 2001, in Russian).
M. Kitayama, T. Narushima, W. C. Carter, R. M. Cannon, A. M. Glaeser. J. Am. Ceram. Soc. 83, 2561 (2000); M. Kitayama, T. Narushima, A. M. Glaeser. J. Am. Ceram. Soc. 83, 2572 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01591.x
P. G. Cheremskoy, V. V. Slesov, V. I. Betekhtin. Pore in solid bodies (Energoatomizdat, Moscow, 1990, in Russian).
Z. Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991).
P. M. Fahey, P. B. Griffin, J. D. Plummer. Rev. Mod. Phys. 1989. V. 61. № 2. P. 289–388
V. L. Vinetskiy, G. A. Kholodar’, Radiative physics of semiconductors. (“Naukova Dumka”, Kiev, 1979, in Russian).
M. G. Mynbaeva, E. N. Mokhov, A. A. Lavrent’ev, K. D. Mynbaev, Techn. Phys. Lett. 34 (17), 13 (2008).
Yu. D. Sokolov. Applied Mechanics. Vol.1 (1). P. 23–35 (1955).
E. L. Pankratov. Russian Microelectronics. 2007. V.36 (1). P. 33–39
E. L. Pankratov. Int. J. Nanoscience. Vol. 7 (4–5). P. 187–197 (2008).
E. L. Pankratov, E. A. Bulaeva. Reviews in Theoretical Science. Vol. 1 (1). P. 58–82 (2013).
E. L. Pankratov, E. A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 3 (3). P. 119–130 (2012).
E. L. Pankratov. Nano. Vol. 6 (1). P. 31–40 (2011).
E. L. Pankratov, E. A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888–893 (2013).
E. L. Pankratov, E. A. Bulaeva. Nanoscience and Nanoengineering. Vol. 1 (1). P. 7–14 (2013).
E. L. Pankratov, E. A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17–31 (2014).
Published
How to Cite
Issue
Section
Copyright (c) 2015 E Pankratov, E Bulaeva

This work is licensed under a Creative Commons Attribution 4.0 International License.