Modelling Phase Change in a 3D Thermal Transient Analysis
DOI:
https://doi.org/10.1260/1750-9548.8.1.49Abstract
A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine) is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC) results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer) and adjacent (metal) surfaces. Initial temperatures are established using a liner extrapolation based on experimental data. Results yield good correlation with experimental data.
References
S. Shan, L. Wang, T. Xin, Z. Bi. (2012). Developing a rapid response production system for aircraft manufacturing. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2012.12.006
Xiaobin, Y., (2008). GapSpace multi-dimensional assembly analysis. Ph. D. THE UNIVERSITY OF NORTH CAROLINAAT CHARLOTTE.
A.J. Comer, J.X. Dhôte, W.F. Stanley, T.M. Young. (2012). Thermo-mechanical fatigue analysis of liquid shim in mechanically fastened hybrid joints for aerospace applications. Composite Structures. 94 (7), p 2181-2187. https://doi.org/10.1016/j.compstruct.2012.01.008
D'Apuzzo, N., (2006). Overview of 3D surface digitization technologies in Europe. Proceedings-SPIE The International Society for Optical Engineering. 6056 (0), p 605605 - 605606.
Syed M.S. Wahid, C.V. Madhusudana (2003) Thermal contact conductance: effect of overloading and load cycling, International Journal of Heat and Mass Transfer, Volume 46, Issue 21, Pages 4139-4143, ISSN 0017-9310. https://doi.org/10.1016/s0017-9310(03)00224-2
M. Rosochowska, R. Balendra, K. Chodnikiewicz. (2003). Measurements of thermal contact conductance. Journal of Materials Processing Technology. 135, p 204-210. https://doi.org/10.1016/s0924-0136(02)00897-x
T M Kathryn. (2007). Considerations for Predicting Thermal Contact Resistance in ANSYS. Proceedings of the 17th KOREA ANSYS User's Conference
Lei Z., HongTae Kang, Yonggang Liu (2011) Finite Element Analysis for Transient Thermal Characteristics of Resistance Spot Welding Process with Three Sheets Assemblies, Procedia Engineering, Volume 16, 2011, Pages 622-631, ISSN 1877-7058. https://doi.org/10.1016/j.proeng.2011.08.1133
Aik Y. T., E. Schlecht, G. Chattopadhyay, R. Lin, C. Lee, J. Gill, I. Mehdi & J. Stake. (2011). Steady-State and Transient Thermal Analysis of High-Power Planar Schottky Diodes. 22nd International Symposium on Space Terahertz Technology, p 26-28.
ANSYS (2009b). Theory and Reference Guide. USA: ANSYS
Kaiser K., (2009). Complete Thermal Design and Modeling for the Pressure Vessel of an Ocean Turbine - A Numerical Simulation and Optimization Approach. MSc. Florida Atlantic University, FL, USA
A. S. A. Elmaryami, B. Omar. (2012). Determination LHP of Axisymmetric Transient Molybdenum Steel-4037H Quenched in Sea Water by Developing 1-D Mathematical Model. Metallurgical and Materials Transactions. 18 (3), p 203-221.
A. Jafari, S.H. Seyedein & M. Haghpanahi. (2008). Modeling of Heat Transfer and Solidification of Droplet/Substrate in Microcasting SDM Process. IUST International Journal of Engineering Science. 19 (5-1), p 187-198.
N. Karunakaran and V. Balasubramanian. (2011). Multipurpose Three Dimensional Finite Element Procedure for Thermal Analysis in Pulsed Current Gas Tungsten Arc Welding of AZ 31B Magnesium Alloy Sheets. International Journal of Aerospace and Mechanical Engineering. 5 (4), p 267-274
Holdsworth, S. Daniel, Simpson, Ricardo (2008). Thermal Processing of Packaged Foods. 2nd ed. Springer. Chapter 2.
O. Ozsun, B E Alaca, A. D. Yalcinkaya, M. Yilmaz, M. Zervas and Y. Leblebici (2009). On heat transfer at microscale with implications for microactuator design. Journal of Micromechanics and Microengineering. 19 (4), p 1-13. https://doi.org/10.1088/0960-1317/19/4/045020
G. Su, Sugiyama Kenichiro, Yingwei Wu. (2007). Natural convection heat transfer of water in a horizontal circular gap. Frontiers of Energy and Power Engineering in China. 1 (2), p 167-173. https://doi.org/10.1007/s11708-007-0021-y
G.H. Su, Y.W. Wu, K. Sugiyama (2008) Natural convection heat transfer of water in a horizontal gap with downward-facing circular heated surface, Applied Thermal Engineering, Volume 28, Issues 11-12, August 2008, Pages 1405-1416, ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2007.09.012
A Ilgevicius (2004) Analytical and numerical analysis and simulation of heat transfer in electrical conductors and fuses, Ph.D, Universität der Bundeswehr München, Munich, Germany.
P. Juraj. (2012). Cooling of an electric conductor by free convection - analytical, computational and experimental approaches. Elektrotechnika, Strojárstvo.
F.J. McQuillan, J.R. Culham and M.M. Yovanovich. (1984). Properties of Dry Air at One Atmosphere. Microelectronics Heat Transfer Lab.
J. R. Lloyd & W. R. Moran. (1974). Natural Convection Adjacent to Horizontal Surface of Various Pianforms. Journal of Heat Transfer. 96, p 443 -447. https://doi.org/10.1115/1.3450224
Goldstein, R. J., Sparrow, E. M., and Jones, D. C (1973) "Natural Convection, Mass Transfer-Adjacent to Horizontal Plates" International Journal of Heat and Mass-Transfer, Vol. 16, No. 5, May 1973, p. 1025-1034. https://doi.org/10.1016/0017-9310(73)90041-0
A. Chandra and R. P. Chhabra. (2012). Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder. International Journal of Chemical and Biological Engineering. 6, p. 69 - 75.
E. L. M. Padilla, R. Campregher, A. Silveira-Neto. (2006). Numerical Analysis of the Natural Convection in Horizontal Annuli at Low and Moderate RA. Engenharia Térmica (Thermal Engineering). 5 (2), p. 58 - 65. https://doi.org/10.5380/reterm.v5i2.61852
MASSIMO CORCIONE. (2008). Natural convection heat transfer above heated horizontal surfaces. Int. Conf. on Heat and Mass transfer., p. 206 - 243.
Pavel Fiala, Ivo Behunek and Petr Drexler (2011). Properties and Numerical Modeling-Simulation of Phase Changes Material. https://doi.org/10.5772/20199
P. Kopyt, M. Soltysiak, M. Celuch (2008) Technique for model calibration in retro-modelling approach to electric permittivity determination, 17th International Conference on Microwaves, Radar and Wireless Communications
F. D. Bryant (2008). Modeling, Analysis and Experiment for Building Ice Parts with Supports Using Rapid Freeze Prototyping. ProQuest. p43.
Chen, L. Wang, P. L. Song, P. N. Zhang, J. Y., (2007). Finite Element Numerical Simulation of Temperature Field in Metal Pattern Casting System and "Reverse Method" of Defining the Thermal Physical Coefficient. ACTA Metallurgica Sinica. 20 (3), p 217-224. https://doi.org/10.1016/s1006-7191(07)60029-5
G. Feng, X. Sheng, Q. Chen, G. Li, H. Li. (2012). Simulated analysis of the phase change energy storage kang heating and heat storage characteristics. China Academic Journal
ANSYS (2009c) - Thermal Analysis Guide. USA: ANSYS
Janet Zulauf, Gernold Zulauf, Rheology of plasticine used as rock analogue: the impact of temperature, composition and strain, Journal of Structural Geology, Volume 26, Issue 4, April 2004, Pages 725-737, ISSN 0191-8141, 10.1016/j.jsg.2003.07.005. https://doi.org/10.1016/j.jsg.2003.07.005
Shouhu Xuan, Yanli Zhang, Yufeng Zhou, Wanquan Jiang and Xinglong Gong. (2012). Magnetic Plasticine™: a versatile magnetorheological material. Journal of Materials Chemistry. 22, p 13395 - 13400. https://doi.org/10.1039/c2jm32375c
Martin P.J. Schöpfer, Gernold Zulauf (2002) Strain-dependent rheology and the memory of plasticine, Tectonophysics, Volume 354, Issues 1-2, 30 August 2002, Pages 85-99, ISSN 0040-1951. https://doi.org/10.1016/s0040-1951(02)00292-5
B.C. Liechty, B.W. Webb, (2007b)Flow field characterization of friction stir processing using a particle-grid method, Journal of Materials Processing Technology, Volume 208, Issues 1-3, 21. https://doi.org/10.1016/j.jmatprotec.2008.01.008
B.C. Liechty, B.W. Webb (2007c) The use of plasticine as an analog to explore material flow in friction stir welding, Journal of Materials Processing Technology, Volume 184, Issues 1-3, 12 April 2007, Pages 240-250, ISSN 0924-0136. https://doi.org/10.1016/j.jmatprotec.2006.10.049
K Eckerson, B Liechty, C D Sorensen. (2008). Thermomechanical similarity between Van Aken plasticine and metals in hot-forming. The Journal of Strain Analysis for Engineering Design. 43 (5), p 383 - 394. https://doi.org/10.1243/03093247jsa364
Geunan Lee, Eundeog Chu, Yong-Taek Im, Jongsoo Lee (1993) AN EXPERIMENTAL STUDY ON FORMING AXI-SYMMETRIC HEAVY FORGING PRODUCTS USING MODELLING MATERIAL, In: W.B. Lee, Editor(s), Advances in Engineering Plasticity and its Applications, Elsevier, Oxford, 1993, Pages 917-922, ISBN 9780444899910. https://doi.org/10.1016/b978-0-444-89991-0.50123-2
K Eckerson, B Liechty, C D Sorensen. (2008). Thermomechanical similarity between Van Aken plasticine and metals in hot-forming. The Journal of Strain Analysis for Engineering Design. 43 (5), p 383 - 394. https://doi.org/10.1243/03093247jsa364
Hui Ji, Eric Robin, Tanguy Rouxel (2009) Compressive creep and indentation behavior of plasticine between 103 and 353K, Mechanics of Materials, Volume 41, Issue 3, March 2009, Pages 199-209, ISSN 0167-6636. https://doi.org/10.1016/j.mechmat.2008.10.014
Pavel Fiala, Ivo Behunek and Petr Drexler (2011). Properties and Numerical Modeling-Simulation of Phase Changes Material, Convection and Conduction Heat Transfer, Dr. Amimul Ahsan (Ed.), ISBN: 978-953-307-582-2, InTech, Available from: http://www.intechopen.com/books/convection-and-conductionheattransfer/properties-and-numerical-modeling-simulation-of-phase-changes-material. https://doi.org/10.5772/20199
M. M. Pariona, A. C. Mossi (2005). Numerical Simulation of Heat Transfer During the Solidification of Pure Iron in Sand and Mullite Molds. Journal of the Brazilian Society of Mechanical Sciences. XXVII (4), 339 - 406. https://doi.org/10.1590/s1678-58782005000400008
Ravi Prasher. (2006). Thermal Interface Materials: Historical Perspective, Status, and Future Directions. Proceedings of the IEEE. 94 (8), 1571 - 1586. https://doi.org/10.1109/jproc.2006.879796
G. P. Peterson and L. S. Fletcher. (1988). Evaluation of Thermal Contact Conductance Between Mold Compound and Heat Spreader Materials. Journal of Heat Transfer. 110, 996 - 998. https://doi.org/10.1115/1.3250605
C.V. Madhusudana (1996) Thermal Contact Conductance, Springer, Berlin. ISBN 0-387-94534-2
K. C. Toh and K. K. Ng. (1997). Thermal Contact Conductance of Typical Interfaces in Electronic Packages Under Low Contact Pressures. IEEOCPMT Electronic Packaging Technology Conference. p 130-135. https://doi.org/10.1109/eptc.1997.723899
G. P. Peterson, L. S. Fletcher. (1988). Thermal Contact Conductance of Packed Beds in Contact With a Flat Surface. Journal of Heat Transfer. 110 (37), 38 - 41. https://doi.org/10.1115/1.3250469
S. R. Mirmira, E. E. Marotta, and L. S. Fletcher. (1997). Thermal Contact Conductance of Adhesives for Microelectronic Systems. Journal of Thermophysics and Heat Transfer. 11 (2), 141 – 145. https://doi.org/10.2514/2.6232
J. J. Fuller and E. E. Marotta. (2001). Thermal Contact Conductance of Metal/Polymer Joints: An Analytical and Experimental Investigation. Journal of Thermophysics and Heat Transfer. 15 (2), 228 - 238. https://doi.org/10.2514/2.6598
M. Bahrami, M. M. Yovanovich, E. E. Marotta. (2006). Thermal Joint Resistance of Polymer-Metal Rough Interfaces. Journal of Electronic Packaging. 128, 23 - 29. https://doi.org/10.1115/1.2159005
E. E. Marotta and L. S. Fletcher. (1996). Thermal Contact Conductance of Selected Polymeric Materials. Journal of Thermophysics and Heat Transfer. 10 (2), 334 - 342. https://doi.org/10.2514/3.792
Mayboudi, L, S (2008). Heat Transfer Modelling and Thermal Imaging Experiments in Laser Transmission Welding of Thermoplastics. Ph. D. Queen's University, Canada (ON)
Roger Stout, P.E. David Billings, P.E. (2002). Accuracy and Time Resolution in Thermal Transient Finite Element Analysis
B.L. Gowreesunker, S.A. Tassou, M. KolokotronI (2012) Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode, Energy and Buildings, Volume 47, April 2012, Pages 353-35. https://doi.org/10.1016/j.enbuild.2011.12.008
Powell, R.W. Ho, C.Y., Liley, P.E (1966). Thermal conductivity of selected materials (United States National Standard Reference Data Serious, 8), p27
Cobden, R., Alcan, Banbury (1994): Phycial Properties, Characteristics and Alloys (EAA - European Aluminium Association)
Sommer, J. L. (1997) High Conductivity, Low Cost Aluminum Composite for Thermal Management
Holly M. V., (2012). Material Properties: Polyamide (Nylon). Available: http://cryogenics.nist.gov/MPropsMAY/Polyamide%20(Nylon)/PolyamideNylon_rev.htm
Airtech (2013). Ipplon KM1300 DATA SHEET
Published
How to Cite
Issue
Section
Copyright (c) 2014 E Haque, P Hampson

This work is licensed under a Creative Commons Attribution 4.0 International License.