An integrated multiphysics model for friction stir welding of 6061 Aluminum alloy
DOI:
https://doi.org/10.1260/1750-9548.8.1.29Abstract
This article presents a new, combined ‘integrated’- ‘multiphysics’ model of friction stir welding (FSW) where a set of governing equations from non-Newtonian incompressible fluid dynamics, conductive and convective heat transfer, and plain stress solid mechanics have been coupled for calculating the process variables and material behaviour both during and after welding. More specifically, regarding the multiphysics feature, the model is capable of simultaneously predicting the local distribution, location and magnitude of maximum temperature, strain, and strain rate fields around the tool pin during the process; while for the integrated (post-analysis) part, the above predictions have been used to study the microstructure and residual stress field of welded parts within the same developed code. A slip/stick condition between the tool and workpiece, friction and deformation heat source, convection and conduction heat transfer in the workpiece, a solid mechanics-based viscosity definition, and the Zener-Hollomon- based rigid-viscoplastic material properties with solidus cut-off temperature and empirical softening regime have been employed.
In order to validate all the predicted variables collectively, the model has been compared to a series of published case studies on individual/limited set of variables, as well as in-house experiments on FSW of aluminum 6061.
References
Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith, P., & Dawes, C.J. (1991). Friction Welding. Cambridge, UK: The Welding Institute TWI Patent Application No 91259788.
Shtrikman, M.M. (2008). Current state and development of friction stir welding Part 3. Welding International, 22, 806-815. https://doi.org/10.1080/09507110802593620
Nourani, M., S. Milani, A., & Yannacopoulos, S. (2011). Taguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: a review and case study, Engineering, 3(2), 144-155. https://doi.org/10.4236/eng.2011.32017
Colegrove, P., Shercliff, H., & Threadgill, P. (2003) Modelling and development of the Trivex (TM) friction stir welding tool, Proc. 4th International Symposium on Friction Stir Welding, TWI Ltd., Park City, (CD-ROM). https://doi.org/10.1533/9781845697716.1.164
Schmidt, H., & Hattel, J. (2005) CFD modelling of the shear layer around the tool probe in friction stir welding, Proc. of Friction Stir Welding and Processing III, K. V. Jata et al, eds., TMS, San Francisco, 225-232. https://doi.org/10.1179/174329305x36070
Long, T., Tang, W., & Reynolds, A. P. (2007) Process response parameter relationships in aluminium alloy friction stir welds, Sci. Tech. Weld. Join., 12(4), 311-318.
Arora, A., Zhang, Z., De, A., & Debroy, T. (2009) Strains and strain rates during friction stir welding, Scrip. Mater., 61(9), 863-866. https://doi.org/10.1016/j.scriptamat.2009.07.015
Chen, C., & Kovacevic, R. (2003) Finite element modeling of friction stir welding-thermal and thermomechanical analysis, Inter. J. Mach. Tool. Manuf., 43 (13), 1319-1326. https://doi.org/10.1016/s0890-6955(03)00158-5
Schmidt, H., & Hattel, J. (2005) A local model for the thermomechanical conditions in friction stir welding, Model. Sim. Mater. Sci. Eng., 13(1), 77-93. https://doi.org/10.1088/0965-0393/13/1/006
Fratini, L., Buffa, G., & Palmeri, D. (2009) Using a neural network for predicting the average grain size in friction stir welding processes, Comp. Struc., 87(17-18), 1166-1174. https://doi.org/10.1016/j.compstruc.2009.04.008
Zhang, Z., & Zhang, H. W. (2009) Numerical studies on controlling of process parameters in friction stir welding, J. Mater. Proc. Tech., 9(2005), 241-270.
Azimzadegan, T., & Serajzadeh, S. (2010) Thermo-mechanical modeling of friction stir welding, Int. J. Mater. Research, 101(3), 390-397. https://doi.org/10.3139/146.110281
Assidi, M., Fourment, L., Guerdoux, S., & Nelson, T. (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments, Inter. J. Mach. Tool. Manuf., 50(2), 143-155. https://doi.org/10.1016/j.ijmachtools.2009.11.008
Hamilton, R., Mackenzie, D., & Li, H. (2010) MultiI-physics simulation of friction stir welding process, Eng. Comput., 27(8), 967-985. https://doi.org/10.1108/02644401011082980
Aval, H. J., Serajzadeh, S., & Kokabi, A. H. (2011) Theoretical and experimental investigation into friction stir welding of AA 5086, Inter. J. Adv. Manuf. Tech., 52(5-8), 531-544. https://doi.org/10.1007/s00170-010-2752-x
Colligan, K. J., & Mishra, R. S. (2008) A conceptual model for the process variables related to heat generation in friction stir welding of aluminum, Scrip. Mater., 58(5), 327-331. https://doi.org/10.1016/j.scriptamat.2007.10.015
Heurtier, P., Jones, M. J., Desrayaud, C., Driver, J. H., Montheillet, F., Allehaux, D. (2006) Mechanical and thermal modelling of friction stir welding, J. Mater. Proc. Technol., 171(3), 348-357. https://doi.org/10.1016/j.jmatprotec.2005.07.014
Hattel, J. H., Schmidt, H., & Tutum, C. (2009). Thermomechanical modelling of friction stir welding. Trends in Welding Research, Proceedings of the 8th International Conference, ASM, Stan A. David Ed., 1-10.
Radaj, D. (2002). Integrated finite element analysis of welding residual stress and distortion. The Proceedings of the 6th Mathematical Modelling of Weld Phenomena, 469-485.
Williams, S. W., Colegrove, P. A., Shercliff, H., Prangnell, P., Robson, J., & Withers, P. (2006). Integrated modelling of the friction stir welding process. The Proceedings of the 6th International Symposium on Friction Stir Welding, 1-10. https://doi.org/10.1201/9781315116815-2
Kamp, N., Colegrove, P. A., Shercliff, H. R., & Robson, J. D. (2010). Microstructure - property modelling for friction stir welding of aerospace aluminium alloys. The Proceedings of the 8th International Symposium on Friction Stir Welding, 1-20. https://doi.org/10.4028/www.scientific.net/msf.519-521.1101
Gallais, C., Denquin, A., Bréchet, Y., & Lapasset, G. (2008). Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: Characterisation and modelling. Materials Science and Engineering A, 496, 77-89. https://doi.org/10.1016/j.msea.2008.06.033
Hattel, J. H. (2008). Integrated modelling in materials and process technology. Materials Science and Technology, 24(2), 137-149. https://doi.org/10.1179/174328407x236526
Hersent, E., Driver, J. H., Piot, D., & Desrayaud, C. (2010). Integrated modelling of precipitation during friction stir welding of 2024-T3 aluminium alloy. Materials Science and Technology, 26(11), 1345-1352. https://doi.org/10.1179/026708310x12798718274511
Simar, A., Bréchet, Y., Meester, B. de, Denquin, A., Gallais, C., & Pardoen, T. (2012). Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties. Progress in Materials Science, 57(1), 95-183. https://doi.org/10.1016/j.pmatsci.2011.05.003
Feng, Z., Wang, X.-L., David, S. A, & Sklad, P. S. (2007). Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6. Science and Technology of Welding & Joining, 12(4), 348-356. https://doi.org/10.1179/174329307x197610
Mapelli, C., & Bergami, L. (2006). Simulation of the inverse extrusion of brass rod by the coupling of fluid mechanical, thermal and ALE modules. The Proceedings of the COMSOL Users Conference 2006, Milan, 1-6.
Vuyst, T. D., Magotte, O., Robineau, A., Goussain, J.-C., & D'Alvise, L. (2006). Multiphysics simulation of the material flow and temperature field around FSW tool. The Proceedings of the 6th International Symposium on Friction Stir Welding, 1-19.
Deloison, D., Marie, F., Guerin, B., & Journet, B. (2008). Multi-physics modelling of bobbin-tool friction stir welding - simulation and experiments. The Proceedings of the 7th International Symposium on Friction Stir Welding, 1-12. https://doi.org/10.1002/9781118062302.ch23
Lopez, R., Ducoeur, B., Chiumenti, M., Meester, B. D., & Saracibar, C. A. D. (2008). Modeling precipitate dissolution in hardened aluminium alloys using neural networks. International Journal of Material Forming, 1, 1291-1294. https://doi.org/10.1007/s12289-008-0139-4
Vuyst, T. D., Madhavan, V., Ducoeur, B., Simar, A., Meester, B. D., & Alvise, L. D. (2008). A thermo-fluid / thermo-mechanical modelling approach computing temperature cycles and residual stresses in FSW. The Proceedings of the 7th International Symposium on Friction Stir Welding, 1-19.
Hamilton, R., MacKenzie, D., & Li, H. (2010). Multi-physics simulation of friction stir welding process. Engineering Computations, 27(8), 967-985. https://doi.org/10.1108/02644401011082980
Jacquin, D., Meester, B. D., Simar, A., Deloison, D., Montheillet, F., & Desrayaud, C. (2011). Asimple Eulerian thermomechanical modeling of friction stir welding. Journal of Materials Processing Tech., 211(1), 57-65. https://doi.org/10.1016/j.jmatprotec.2010.08.016
Crumbach, M., Goerdeler, M., Gottstein, G., Neumann, L., Aretz H., & Kopp R. (2004). Through-process texture modelling of aluminium alloys. Model. Simul. Mater. Sci. Eng., 12(1), S1-S18. https://doi.org/10.1088/0965-0393/12/1/s01
Bellini, A., Thorborg J., & Hattel J. H. (2006). Thermo-mechanical modelling of aluminium cast parts during solution treatment. Model. Simul. Mater. Sci. Eng., 14, 677-688. https://doi.org/10.1088/0965-0393/14/4/010
Kermanpur, A., Lee, P. D., Tin S., & McLean M. (2005) Integrated model for tracking defects through full manufacturing route of aerospace discs. Mater. Sci. Technol., 21(4), 437-444. https://doi.org/10.1179/174328405x39680
Gandin, Ch.-A., Brechet, Y., Rappaz, M., Canova, G., Ashby M., & Schercliff H. (2002). Modelling of solidification and heat treatment for the prediction of yield stress of cast alloys. Acta Mater., 50, 901-927. https://doi.org/10.1016/s1359-6454(01)00376-7
Myhr, O. R., Grong, O., Fjaer H. G., & Marioara C. D., (2004). Modelling of the microstructure and strength evolution in Al-Mg-Si alloys during multistage thermal processing. Acta Mater., 52(17), 4997-5008. https://doi.org/10.1016/j.actamat.2004.07.002
Lundback, A., Alberg, H., & Henrikson P. (2005). Simulation and validation of TIG-welding and post weld heat treatment of an Inconel 718 plate. The proceeding of the Mathematical modelling of weld phenomena 7, (H. Cerjak et al. ed.), Graz, Technical University of Graz, 683-696.
Nourani, M., S. Milani, A., Yannacopoulos, S., & Yan, C. (2012) Predicting grain size distribution in friction stir welded 6061 aluminum, The 9th International Symposium on Friction Stir Welding, Huntsville, USA, 1-9. https://doi.org/10.4028/www.scientific.net/msf.768-769.682
Nourani, M., S. Milani, A., & Yannacopoulos, S (2012) Predicting residual stresses in friction stir welding of aluminum alloy 6061 using an integrated multiphysics model, Submitted to the 9th International Conference on Residual Stresses (ICRS 9), Garmisch-Partenkirchen, Germany. https://doi.org/10.4028/www.scientific.net/msf.768-769.682
Versteeg, H. K., & Malalasekera, W. (1995). An introduction to computational fluid dynamics the finite volume method, Longman Scientific & Technical, New York.
Nourani, M., S. Milani, A., & Yannacopoulos, S. (2011). A new approach to measure stain during friction stir welding using visioplasticity, Proc of ASME Conference, Denver, 1-7. https://doi.org/10.1115/imece2011-62061
Xu, S., & Deng, X. (2008). A study of texture patterns in friction stir welds. Acta Materialia, 56, 1326-1341. https://doi.org/10.1016/j.actamat.2007.11.016
Atharifar, H., Lin, D., & Kovacevic, R. (2009) Numerical and experimental investigations on the loads carried by the tool during friction stir welding, J Mater Eng Perform, 339-350. https://doi.org/10.1007/s11665-008-9298-1
Lewis, R., Nithiarasu, P., & Seetharamu, K. (2004). Fundamentals of the finite element method for heat and fluid flow, John Wiley & Sons, Ltd, New York. https://doi.org/10.1002/0470014164
Sellars C. M. & Tegart W. J.M. (1966). On the mechanism of hot deformation. Acta Metall., 14, 1136-1138.
Sheppard T. & Wright D. (1979). Determination of flow stress: Part 1 constitutive equation for aluminum alloys at elevated temperatures. Met. Technol., 6, 215-223. https://doi.org/10.1179/030716979803276264
Colegrove, P. A., Shercliff, H. R., & Zettler, R. (2007). Model for predicting heat generation and temperature in friction stir welding from the material properties. Science and Technology, 12(4), 284-298. https://doi.org/10.1179/174329307x197539
Tello, K., Gerlich, A., & Mendez, P. (2010). Constants for hot deformation constitutive models for recent experimental data, Sci Tech Weld Join, 15(3), 260-266.
Wriggers, P. (2008). Nonlinear Finite Element Methods., Springer-Verlag Berlin Heidelberg, Germany.
Long, T., & Reynolds, A. P. (2006). Parametric studies of friction stir welding by commercial fluid dynamics simulation. Science And Technology, 11(2), 200-209. https://doi.org/10.1179/174329306x85985
Seidel, T. U., & Reynolds, A. P. (2003). Two-dimensional friction stir welding process model based on fluid mechanics. Science And Technology, 175-184.
Sheppard, T., & Jackson, A. (1997). Constitutive equations for use in prediction of flow stress during extrusion of aluminum alloys. Materials Science and Technology, 13(March), 203-209. https://doi.org/10.1179/mst.1997.13.3.203
Wang, H., Colegrove, P. A., Mayer, H. M., Campbell, L., & Robson, J. D. (2010). Material constitutive behaviour and microstructure study on aluminum alloys for friction stir welding. Advanced Material Research, 89-91, 615-622. https://doi.org/10.4028/www.scientific.net/amr.89-91.615
Schneider, J., Beshears, R., & Nunes, A. C. (2006). Interfacial sticking and slipping in the friction stir welding process. Materials Science and Engineering A, 436, 297-304. https://doi.org/10.1016/j.msea.2006.07.082
Arbegast W.J. (2003) Modeling friction stir joining as a metal working process, in Hot deformation of aluminum alloys, ed. Z. Jin. TMS Warrendale.
Colligan, K. (1999). Material flow behavior during friction stir welding of aluminum. Welding Journal, 78(7), 229-237.
Published
How to Cite
Issue
Section
Copyright (c) 2014 M Nourani, A Milani, S Yannacopoulos, C Yan

This work is licensed under a Creative Commons Attribution 4.0 International License.