A microstructure-based model for describing strain softening during compression of Al-30%wt Zn alloy
DOI:
https://doi.org/10.1260/1750-9548.7.1.77Abstract
A microstructural-based model, describing the plastic behavior of Al-30wt% Zn alloy, is proposed and the effect of solid solution decomposition, Orowan looping, twinning and grain refinement is analyzed. It is assumed that the plastic deformation process is dominated by strain-induced solute diffusion and dislocation motion. To capture the essential physics, a law describing the evolution of the mean free path of dislocations with plastic strain is proposed which reproduces the experimentally observed strain softening.
References
Mazilkin A. A., Straumal B. B., Borodachenkova M. V., Valiev R. Z., Kogtenkova O. A., Baretzky B., Gradual softening of Al-Zn alloys during high-pressure torsion, Materials Letters, 2012, 84, 63-65. https://doi.org/10.1016/j.matlet.2012.06.026
Mukhopadhyay A. K., Kumar A., Raveendra S., Samajdar I., Development of grain structure during superplastic deformation of an Al-Zn-Mg-Cu-Zr alloy containing Sc, Scripta Materialia, 2011, 64, 386-389. https://doi.org/10.1016/j.scriptamat.2010.10.038
Cepeda-Jiménez C. M., García-Infanta J. M., Ruano O. A., Carreño F., Mechanical properties at room temperature of an Al-Zn-Mg-Cu alloy processed by equal channel angular pressing, Journal of Alloys and Compounds, 2011, 509, 8649-8656. https://doi.org/10.1016/j.jallcom.2011.06.070
Ng H. P., Bettles C. J., Muddle B. C., Some observations on deformation-related discontinuous precipitation in an Al-14.6at%Zn alloy, Journal of Alloys and Compounds, 2011, 509, 1582-1589. https://doi.org/10.1016/j.jallcom.2010.10.167
Deschamps A., Texier G., Ringeval S., Delfaut-Durut L., Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy, Materials Science and Engineering, 2009, 501, 133-139. https://doi.org/10.1016/j.msea.2008.09.067
Pucun Bai, Xiaohu Hou, Xiuyun Zhang, Chunwang Zhao, Yongming Xing, Microstructure and mechanical properties of a large billet of spray formed Al-Zn-Mg-Cu alloy with high Zn content, Materials Science and Engineering, 2009, 508, 23-27. https://doi.org/10.1016/j.msea.2008.12.010
García-Infanta J. M., Zhilyaev A.P, Sharafutdinov A., Ruano O. A., Carreño F., An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al-Zn-Mg-Cu alloy processed by high-pressure torsion, Journal of Alloys and Compounds, 2009, 473, 163-166. https://doi.org/10.1016/j.jallcom.2008.06.006
Saray O., Purcek G., Microstructural evolution and mechanical properties of Al-40 wt.%Zn alloy processed by equal-channel angular extrusion, Journal of Materials Processing Technology, 2009, 209, 2488-2498. https://doi.org/10.1016/j.jmatprotec.2008.05.043
Straumal B., Valiev R., Kogtenkova O., Zieba P., Czeppe T., Bielanska E., Faryna M., Thermal evolution and grain boundary phase transformations in severely deformed nanograined Al-Zn alloys, Acta Materialia, 2008, 56, 6123-6131. https://doi.org/10.1016/j.actamat.2008.08.021
Gubicza J., Schiller I., Chinh N. Q., Illy J., Horita Z., Langdon T. G., The effect of severe plastic deformation on precipitation in supersaturated Al-Zn-Mg alloys, Materials Science and Engineering, 2007, 460-461, 77-85. https://doi.org/10.1016/j.msea.2007.01.001
Mazilkin A. A., Straumal B. B., Rabkin E., Baretzky B., Enders S.,. Protasova S.G, Kogtenkova O. A., Valiev R.Z, Softening of nanostructured Al-Zn and Al-Mg alloys after severe plastic deformation, Acta Materialia, 2006, 54, 3933-3939. https://doi.org/10.1016/j.actamat.2006.04.025
Málek P., Cieslar M., The influence of processing route on the plastic deformation of Al-Zn-Mg-Cu alloys, Materials Science and Engineering, 2002, 324, 90-95. https://doi.org/10.1016/s0921-5093(01)01289-8
Wu Y.L, Froes F.H, Alvarez A, Li C.G, Liu J, Microstructure and properties of a new super-high-strength Al-Zn-Mg-Cu alloy C912, Materials & Design, 1997, 18, 211-215. https://doi.org/10.1016/s0261-3069(97)00084-8
Deschamps A., Le Sinq L., Bréchet Y., Embury J. D., Niewczas M., Anomalous strain hardening behaviour of a supersaturated Al-Zn-Mg alloy, Materials Science and Engineering, 1997, 234-236, 477-480. https://doi.org/10.1016/s0921-5093(97)00324-9
Stolyarov V. V., Latysh V. V., Shundalov V. A., Salimonenko D. A., Islamgaliev R. K., Valiev R. Z., Influence of severe plastic deformation on aging effect of Al-Zn-Mg-Cu-Zr alloy, Materials Science and Engineering, 1997, 234-236, 339-342. https://doi.org/10.1016/s0921-5093(97)00210-4
Wood J., McCormick P. G., Plastic flow instability in a precipitation hardened Al-Zn-Mg alloy, Acta Metallurgica, 1987, 35, 247-251. https://doi.org/10.1016/0001-6160(87)90232-x
Kocks U. F., Mecking H., The Physics and Phenomenology of Strain Hardening, Prog Mater Sci, 2003, 48, 171-273.
Lopes A. B., Barlat F., Gracio J. J., Ferreira Duarte J. F., Rauch E. F., Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear, International Journal of Plasticity, 2003, 19, 1-22. https://doi.org/10.1016/s0749-6419(01)00016-x
Barlat F., Ferreira Duarte J. M., Gracio J. J., Lopes A. B., Rauch E. F., Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample, International Journal of Plasticity, 2003, 19, 1215-1244. https://doi.org/10.1016/s0749-6419(02)00020-7
Hansen N., Distributions of glide systems in cell forming metals. In: Lowe T. C., Rollett A. D., Follansbee P. S., Daehn G. S. (Eds.), Modeling the Deformation of Crystalline Solids, TMS, Warrendale, PA, 1991, 37-49.
Hansen N., Microstructure and flow stress of cell forming metals, Scripta Metallurgica Materialia, 1992, 27, 947-950. https://doi.org/10.1016/0956-716x(92)90454-m
Gracio J. J., Barlat F., Rauch E. F., Jones P. T., Neto V. F., Lopes A. B., Artificial aging and shear deformation behaviour of 6022 aluminium alloy, International Journal of Plasticity, 2004, 20, 427-445. https://doi.org/10.1016/s0749-6419(03)00095-0
Baudelet B., Deguen M., Felgères L., Parnière P., Rondé-Oustau F., Sanz G., Analyze microstructurelle de l'influence des trajectoires de déformation, Mém. Scient. Revue Metall, 1978, 75, 409-422.
Rauch E. F., Gracio J. J., Barlat F., Lopes A. B., Ferreira Duarte J., Hardening behavior and structural evolution upon strain reversal of aluminum alloys, Scripta Materialia, 2002, 46, 881-886. https://doi.org/10.1016/s1359-6462(02)00073-8
Risebrough N. R., The Deformation Characteristics of Zinc and Cadium, Department of Metallurgy, UBC, 1965.
Picu R. C., Vincze G., Ozturk F., Gracio J. J., Barlat F., Maniatty A. M., Strain rate sensitivity of the commercial aluminum alloy AA5182-O, Materials Science and Engineering, 2005, 390, 334-343. https://doi.org/10.1016/j.msea.2004.08.029
Picu R. C., Vincze G., Gracio J. J., Barlat F., Effect of solute distribution on the strain rate sensitivity of solid solutions, Scripta Materialia, 2006, 54, 71-75. https://doi.org/10.1016/j.scriptamat.2005.09.002
Furukawa M., Horita Z., Nemoto M., Valiev R. Z., Langdon T. G., Fabrication of submicrometer-grained Zn-22% Al by torsion straining, Journal of Materials Research, 1996, 11, 2128-2130. https://doi.org/10.1557/jmr.1996.0270
Gracio J. J., Fernandes J. V., Schmitt J. H., Effect of grain size on substructural evolution and plastic behaviour of copper, Materials Science and Engineering, 1989, 118, 97-105. https://doi.org/10.1016/0921-5093(89)90061-0
Conrad H., Narayan J., Mechanisms for grain size hardening and softening in Zn, Acta-Materialia, 2002, 50, 5067-5078. https://doi.org/10.1016/s1359-6454(02)00357-9
Published
How to Cite
Issue
Section
Copyright (c) 2013 M Borodachenkova, J Gracio, R Picu, F Barlat

This work is licensed under a Creative Commons Attribution 4.0 International License.