Turbulent flow analysis and cavitation prediction in axial cooling water pump
DOI:
https://doi.org/10.1260/1750-9548.6.4.365Abstract
The aim of this literature is to investigate the performance and three-dimensional flow field in an axial flow CW pump and observing cavitation phenomenon in specified situations. Computational Fluid Dynamic software FLUENT 6.3 was utilized to simulate the whole flow field of the pump to capture all features in the domain. RNG k-ε model combined with standard wall functions is used to deal with the turbulent nature of the problem. Two principal domains are verified: 1) the rotor domain which includes four moving impellers. 2) the stator domain which includes nine static vanes. Hence, the rotor-stator interaction was treated with Moving Reference Frame (MRF) technique. Pressure contour and streamlines of the simulation are shown here. The performance curve of the model is in good agreement with the reference power plant data. Finally, the cavitation region defined with the vaporization pressure is demonstrated for cases with different flow rates.
References
Paolo C. Andrea V. Germano F. Gian L. B, Modeling of fluid properties in hydraulic positive displacement machines, Simulation Modeling Practice and Theory, 2006, 14, 1059-1072.
Harrison, A. M. Edge, K. A. Reduction of axial piston pump pressure ripple, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2000. 214 (1), 53-63. https://doi.org/10.1243/0959651001540519
Johansson, A. Andersson, J. Palmberg, J. O. Optimal design of the cross-angle for pulsation reduction in variable displacement pumps, Proceeding of Bath Workshop on Power Transmission and Motion Control, University of Bath, UK, 2002.
Gian, L. B. Paolo, C. Andrea, V. Guidetti, M. Simulation model of axial piston pumps inclusive of cavitation, ASME International Mechanical Engineering Congress and Exposition, New Orleans, Lousiana, USA, November, 2002. 29-37.
Paolo, C. Abdrea, V. Modeling of an axial piston pump for pressure ripple analysis. In: Proc. of The 8th Scandinavian Int. Conference on Fluid Power, Tampere Finland, May 7-9, 2003.
ZHANG, D. Sh. SHI, W. D. CHEN, B. GUAN, X. UNSTEADY FLOW ANALYSIS AND EXPERIMENTAL INVESTIGATION OF AXIAL-FLOW PUMP, Journal of Hydrodynamics, 2010, 22(1):35-43. https://doi.org/10.1016/s1001-6058(09)60025-1
SHIGMITSU, T. FURUKAWA, A. and WATANABE S. et al. Internal flow measurement with LDV at design point of contra-rotating axial flow pump Nihon Kikai Gakkai Ronbunshu. Transactions of the Japan Society of Mechanical Engineers, Part B, 2008, 74(5): 1091-1097 (in Japanese). https://doi.org/10.1299/kikaib.74.1091
GAO, H. LIN, W. L. and DU Z. H. An investigation of the flow and overall performance in a water-jet axial flow pump based on computational fluid dynamics and inverse design method. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222(5): 517-527. https://doi.org/10.1243/09576509jpe476
FAN, H. HONG, F. and ZHOU, L. D. et al. Design of implantable axial-flow blood pump and numerical studies on its performace. Journal of Hydrodynamics, 2009, 21(4): 445-452.
HUANG, H. M. GAO, H. and DU, Z. H. Numerical simulation and experimental study on flow field in an axial flow pump. Journal of Shanghai Jiaotong University, 2009, 43(1): 124-128 (in Chinese).
Naqvi, R. Wolf, J. Bolland, O. Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture. Energy, 2007, 32, 360-370. https://doi.org/10.1016/j.energy.2006.07.011
Kim, K. T., Suh, J. M. Development of an advanced PWR fuel for OPR1000s in Korea. Nuclear Engineering and Design, 2008, 238 (10), 2606-2613. https://doi.org/10.1016/j.nucengdes.2008.05.005
Kim, K. T., Jang, Y. K., Kim, J. I., 2009. The study on the impact of fsi on the fuel assembly design optimization. ASME Pressure Vessels and Piping Conference, Chicago, Illinois, USA, 2008, 4, 15-19.
Chi, J. L., Wang, B., Zhang, S. L., Xiao, Y. H. Off-design performance of a chemical looping combustion (CLC) combined cycle: effects of ambient temperature. Journal of Thermal Science, 2010. 19 (1), 87-96. https://doi.org/10.1007/s11630-010-0087-4
Li SC. Cavitation of hydraulic machinery. London: Imperial College Press; 2000.
Edward, G. Cavitation and the centrifugal pump: a guide for pump users. Philadelphia (PA): Taylor & Francis; 1999.
Uchiyama T. Numerical simulation of cavitating flow using the upstream finite element method. Applied Mathematical Modelling, 1998, 22; 235-50. https://doi.org/10.1016/s0307-904x(98)10003-3
Michelle, F. Some present trends in hydraulic machinery research. Hydraulic machinery and cavitation. London: Kluwer Academic Publishers; 1996. https://doi.org/10.1007/978-94-010-9385-9_3
Catania, A. E. Ferrari, A. Spessa, E. Temperature variations in the simulation of high-pressure injection-system transient flows under cavitation, International Journal of Heat and Mass Transfer, 2008, 51, 2090-2107. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.032
Catania, A. E. Ferrari, A. Manno, M. Spessa, E. A comprehensive thermodynamic approach to acoustic cavitation simulation in highpressure injection systems by a conservative homogeneous two-phase barotropic flow model, ASME Journal of engineering for gas turbines and power. 2006, 128 (1-2), 434-445. https://doi.org/10.1115/1.2056007
Abdel-Maksoud, M. Hänel, D. Lantermann, U. Modeling and computation of cavitation in vortical flow, International Journal of Heat and Fluid Flow, 2010, 31, 1065-1074. https://doi.org/10.1016/j.ijheatfluidflow.2010.05.010
LIU, D. M. LIU, S. H. and WU, Y. L. et al. LES numerical simulation of cavitation Bubble shedding on ALE 25 and ALE 15 hydrofoils. Journal of Hydrodynamics, 2009, 21(6): 807-813. https://doi.org/10.1016/s1001-6058(08)60216-4
WANG, G. OSTOJA, S. M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Applied Mathematical Modelling, 2007, 31(3): 417-447. https://doi.org/10.1016/j.apm.2005.11.019
POUFFARY, B. PATELLA, R. F. and REBOUD J. L. et al. Numerical simulation of 3D cavitating flows: Analysis of cavitation head drop in turbomachinery. Journal of Fluids Engineering, 2008, 130: 061301. https://doi.org/10.1115/1.2917420
PARK, K. SEOL, H. and CHOI W. et al. Numerical prediction of tip vortex cavitation behavior and noise considering nuclei size and distribution. Applied Acoustics, 2009, 70(5): 674-680. https://doi.org/10.1016/j.apacoust.2008.08.003
HATTORI, S. KISHIMOTO, M. Prediction of cavitation erosion on stainless steel components in centrifugal pumps. Wear, 2008, 265(11-12): 1870-1874. https://doi.org/10.1016/j.wear.2008.04.045
YE, J. M. XIONG, Y. Prediction of podded propeller cavitation using an unsteady surface panel method. Journal of Hydrodynamics, 2008, 20(6): 790-796. https://doi.org/10.1016/s1001-6058(09)60017-2
WANG, F. J. Computational fluid dynamic analysis- CFD principle and application. Beijing: Tsinghua University Press, 2004, 114-116 (in Chinese).
Published
How to Cite
Issue
Section
Copyright (c) 2012 Y Vazifeshenas, M Farhadi, K Sedighi, R Shafaghat
This work is licensed under a Creative Commons Attribution 4.0 International License.