Finite Element Modelling of the Effects of Average Grain Size and Misorientation Angle on the Deformation

Authors

  • K Sanusi
  • G Oosthuizen

DOI:

https://doi.org/10.1260/1750-9548.5.3.275

Abstract

This paper comprises an investigation using finite element analysis to study the behaviour of nanocrystalline grain structures during Equal Channel Angular Press (ECAP) processing of metals. The effects of average grain size and misorientation angle on the deformation are examined in order to see how microstructural features might explain the observed increase in strength of nanocrsytalline metals. While this approach forms a convenient starting as it offers a simple way of including grain size effects and grain misorientation to which we could add additional phenomena through developing the material model used to describe the anisotropy and techniques that would automatically re-mesh the refined grain structure produced under severe plastic deformation. From this, it can be concluded that these additional techniques incorporated into the finite element model produced effects that correspond to observed behaviour in real polycrystals.

References

ABAQUS Explicit Userís Manual, Version 6.5. (2005). Hibbitt, Karlsson, & Sorensen.

Resk H, Delamnnay L, Bernacki M, Coupez T and Loge R. (2009). Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations, Journal of Materials Science and Engineering, volume 17. https://doi.org/10.1088/0965-0393/17/7/075012

Zhao, W.J., Ding H., Ren, Y.P., Hao, S.M., Wang, J. and Wang, J.T. (2005). Finite element simulation of deformation behaviour of pure aluminium during equal channel angular pressing, Journal of Materials Science and Engineering, volume 410-411. pages 348-352. https://doi.org/10.1016/j.msea.2005.08.134

Sus-Ryszkowska, M., Wejrzanowski, T., Pakiela, Z, and Kurzydlowski, K.J. (2004). Microstructure of ECAP severely deformed iron and its mechanical properties, Journal of Materials Science and Engineering, volume A369, issue 1-2, page 151. https://doi.org/10.1016/j.msea.2003.10.318

Bate P. (1999). Modelling deformation microstructure with the crystal plasticity finite-element method Phil. Trans. R. Soc. Lond, volume A 357 page 1589-1601.

Raghanvan, S. (2001). Computer simulation of the Equal Channel Angular Extrusion (ECAE) process, Volume 44, issue 1 page 91-96.

Segal, V.M. (1995). Materials processing by simple shear, Journal of Materials Science and Engineering, volume A197, issue 2 pages 143-146.

Dobosz, R., Wejrzanowski, T. and Kurzydlowski, K.J. (2009). Modelling the influence of the structure on the properties of nanometals, Computer Methods in Materials Science, volume 9 issue 1.

Rosochowski, A. and Olejnik, L. (2008) Finite element of two-turn incremental ECAP, International Journal Materials form suppl 1, pages 483-486. https://doi.org/10.1007/s12289-008-0108-y

Kumar, K.S., Van Swygenhoven, H. and Suresh, S. (2003) Mechanical Behaviour of Nanocrystalline metals and alloys Acta Metallurgica volume 51, pages 5743-5774.

Segal, V.M, Reznikov, V.I., Drobyshevskiy, A.E. and Kopylov, V.I. (1981) Journal of Russian Metallurgy page 199-205.

Huapt, P. and Kersten, T.H. (2003). on the modelling of anisotropic materials behaviours in viscoplasticity, International Journal of Plasticity volume 19 pages 1885-1915.

Weyer, S. Frohlich, A. Riesch-oppermann, H. Cizelj, L. and Kovac M. (2002). Automatic finite element meshing of planar voronoi Tessellations. Engineering Fracture Mechanics, volume 69, issue 8. page 945-958. https://doi.org/10.1016/s0013-7944(01)00124-2

Sarma, G., and Radhakrishnan, B. (2004). Modelling microstructural effects on the evolution of cube texture during hot deformation of aluminium. Journal of Materials Science and Engineering, volume A385, pages 91-104. https://doi.org/10.1016/j.msea.2004.06.007

Zhu, Y.T. and Langdon, T.G. (2005). Influence of grain size on deformation mechanisms; An extension to nanocrystalline materials. Journal of Materials Science and Engineering, volume A409 page 234. https://doi.org/10.1016/j.msea.2005.05.111

Yingguang Liua, Jianqiu Zhoua, Xiang Ling (2010). Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline materials, Journal of Materials Science Engineering, volume A527 pages 1719-1729. https://doi.org/10.1016/j.msea.2009.11.033

Van Swygenhoven, H., Caro, A. and Farkas, D. (2001). A molecular dynamics study of polycrystalline FCC metals at the nanoscale: grain boundary structure and its influence on plastic deformation, Materials Science and Engineering, A volume, 309, pages 440-444. https://doi.org/10.1016/s0921-5093(00)01794-9

Dalla, F., Lapovok, R., Sandlin, J., Thompson, P.F., Davies, C.H.J. and Pereloma, E.V. (2004). Microstructures and properties of copper processed by equal Channel angular extrusion for 1-16 passes, Acta Metallurgica, volume 52, pages 4819-4832. https://doi.org/10.1016/j.actamat.2004.06.040

Petch, N.J. (1953). The cleavage strength of polycrystals. Journal of Iron and Steel Institute, volume 174, pages 25-28.

Hall, E.O. (1951). The deformation and ageing of mild steel: III. Discussion of results. Proceedings of the Physical society London, volume 64, pages 747-753. https://doi.org/10.1088/0370-1301/64/9/303

Published

2011-09-30

How to Cite

Sanusi, K., & Oosthuizen, G. (2011). Finite Element Modelling of the Effects of Average Grain Size and Misorientation Angle on the Deformation. The International Journal of Multiphysics, 5(3), 275-286. https://doi.org/10.1260/1750-9548.5.3.275

Issue

Section

Articles