Plasma-based Surface Modification Applications of Biomaterials – A Review

Authors

  • G Divya Deepak
  • Atul
  • G Anne

DOI:

https://doi.org/10.21152/1750-9548.18.1.47

Abstract

Plasma-surface modification method (PSMM) is an efficient and inexpensive surface processing method for various materials and has generated great interest in the field of biomedical engineering. This paper focuses on the numerous conventional plasma methods and experimental approaches applied to materials research for suitable biomedical applications, including plasma deposition, laser plasma deposition, plasma sputtering and etching, plasma polymerization, plasma spraying, plasma implantation, and so on. The distinctive benefit of plasma modification is its biocompatibility and surface properties can be enhanced on a selective basis while the bulk characteristics of the materials stay unaltered. Existing materials can hence be used and the requirement for new materials may be circumvented thereby reducing the time for the development of novel and efficient biomedical devices.

References

Riccardo d'Agostino,Pietro Favia,Christian Oehr,Michael R. Wertheimer, "Low- Temperature Plasma Processing of Materials: Past, Present, and Future", Plasma Process and Polymers, 2005 2, 7. https://doi.org/10.1002/ppap.200400074

P. Favia, E. Sardella, L.C. Lopez, S. Laera, A. Milella, B.R. Pistillo, F. Intranuovo, M. Nardulli, R. Gristina, R. d'Agostino, in Plasma Assisted Decontamination of Biological and Chemical Agents, edited by S. Gu¸ceri, V. Smirnov, NATO ASI series (Springer, Dordrecht, The Netherlands, 2008), 203-225.

PietroFavia,EloisaSardella, RobertoGristina and Riccardod'Agostino, "Novel plasma processes for biomaterials: micro-scale patterning of biomedical polymers", Surface and Coatings Technology, 2003, 169, 707. https://doi.org/10.1016/S0257-8972(03)00174-9

E. Sardellaa,T, R. Gristinab , G. Cecconec , D. Gillilandc , & Papadopoulou-Bouraouic, "Control of cell adhesion and spreading by spatial microarranged PEO-like and pdAA domains", Surface and Coatings Technology , 2005,200, 51. https://doi.org/10.1016/j.surfcoat.2005.02.063

G.S. Senesi, E. D'Aloia, R. Gristina, P. Favia, R. d'Agostino, "Surface characterization of plasma deposited nano-structured fluorocarbon coatings for promoting in vitro cell growth", Surface Science, 2007, 601,1019. https://doi.org/10.1016/j.susc.2006.11.046

L. De Bartolo, S. Morelli, A. Piscioneri, L.C. Lopez, P. Favia, "Novel membranes and surface modification able to activate specific cellular responses", Biomolecular Engineering, 2007 , 24, 23. https://doi.org/10.1016/j.bioeng.2006.07.001

S. Laera, L.C. Lopez, L. De Bartolo, S. Morelli, S. Salerno, A. Piscioneri, M. Nardulli, R. Gristina, P. Favia, 2009 , "H2/NH3 Plasma-Grafting of PEEK-WC-PU Membrane to Improve their cyto-Compatibility with Hepatocytes", 6, S81. https://doi.org/10.1002/ppap.200930307

O. Kylian, H. Rauscher, B. Denis, L. Ceriotti, F. Rossi, "Elimination of Homo-polypeptides of Amino Acids from Surfaces by means of Low Pressure Inductively Coupled Plasma Discharge", Plasma Process and Polymers, 2009 ,6, 848. https://doi.org/10.1002/ppap.200900027

C. Oehr, "Plasma surface modification of polymers for biomedical use", Nucl. Instr. Methods B ,2003,208, 40. https://doi.org/10.1016/S0168-583X(03)00650-5

S. Mandl, B. Rauschenbach, "Plasma Immersion Ion Implantation. New Technology for Homogeneous Modification of the Surface of Medical Implants of Complex Shapes", Biomed. Technik, 2000, 45, 193. https://doi.org/10.1515/bmte.2000.45.7-8.193

M. Kizling, S.G. Jaras, "A review of the use of plasma techniques in catalyst preparation and catalytic reactions" Appl. Catal. A: Gen, 1996,147, 1. https://doi.org/10.1016/S0926-860X(96)00215-3

M. Laroussi, "Low Temperature Plasma-Based Sterilization: Overview and State-of-the- Art", Plasma Process. Polym. , 2005,2, 391. https://doi.org/10.1002/ppap.200400078

G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, "Applied Plasma Medicine" Plasma Process. Polym., 2008, 5,503. https://doi.org/10.1002/ppap.200700154

A. Ohl, W. Schleinitz, A. Meyer-Sievers, A. Becker, D. Keller, K. Schroder, J. Conrads," Design of an UHV reactor system for plasma surface treatment of polymer materials" ,Surf. Coatings Technol., 1999, 1006, 116. https://doi.org/10.1016/S0257-8972(99)00139-5

P. Sioshansi, E.J. Tobin, "Surface treatment of biomaterials by ion beam processes" Surf. Coatings Technol., 1996, 83,175. https://doi.org/10.1016/0257-8972(95)02838-2

B.D. Ratner, J. Biomater, "Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces"Sci. Polym. Edn, 1992,26, 415. https://doi.org/10.1002/jbm.820260402

S.T. Picraux, L.E. Pope, "Tailored Surface Modification by Ion Implantation and Laser Treatment", Science, 1984, 226, 615

https://doi.org/10.1126/science.226.4675.615

M. Szycher, P. Sioshansi, E. E. Frisch, 1990, Biomaterials for the 1990s: Polyurethanes. Silicones and Ion Beam Modification Techniques (Part 11), Spire Corporation, Patriots Park, Bedford

T.G. Vargo, E.J. Bekos, Y.S. Kim, J.P. Ranieri, R. Bellamkonda, P. Aebischer, D.E. Margevich, P.M. Thompson, J.A. Gardella Jr, "Synthesis and characterization of fluoropolymeric substrata with immobilized minimal peptide sequences for cell adhesion studies" J. Biomed. Mater. Res, 1995 ,29, 767. https://doi.org/10.1002/jbm.820290613

T.G. Vargo, P.M. Thompson, L.J. Gerenser, R.F. Valentini, P. Aebischer, D.J. Hook, "Monolayer chemical lithography and characterization of fluoropolymer films" Langmuir, 1992 , 8, 130. https://doi.org/10.1021/la00037a025

A. Ohl, K. Schroder, "Plasma-induced chemical micropatterning for cell culturing applications: a brief review"Surf. Coatings Technol, 1999,116, 820. https://doi.org/10.1016/S0257-8972(99)00150-4

M. Inoue, Y. Suzuki, T. Takagi, "Review of Ion Engineering Center and related projects in Ion Engineering Research Institute" Nucl. Instrum. Meth. Phys. Res. , 1997,121, 1. https://doi.org/10.1016/S0168-583X(96)00431-4

Anders, A., Fundamentals of pulsed plasmas for materials processing. Surf. Coat. Technol. , 2004 ,183,301. https://doi.org/10.1016/j.surfcoat.2003.09.049

C. Vergne, O. Buchheit, F. Eddoumy, E. Sorrenti, J. Di Martino, D. Ruch, "Modifications of the Polylactic Acid Surface Properties by DBD Plasma Treatment at Atmospheric Pressure", J. Eng. Mater. Technol,2011, 133, 030903. https://doi.org/10.1115/1.4004156

Luis Duque, Bernhard Menges, Salvador Borros, and Renate Förch, "Immobilization of Biomolecules to Plasma Polymerized Pentafluorophenyl Methacrylate", Biomacromolecules 2010, , 11, 2818. https://doi.org/10.1021/bm100910q

Irena Maliszewska and Tomasz Czapka, 2020 "Biofouling Removal from Membranes Using Nonthermal Plasma", Energies, 2020,13, 4318. https://doi.org/10.3390/en13174318

M. Widner, I. Alexeff, W. D. Jones, and K. E. Lonngren, "Ion acoustic wave excitation and ion sheath evolution," Phys. Fluids, 1970 ,13, 2532. https://doi.org/10.1063/1.1692823

J. R. Conrad, "Sheath thickness and potential profiles of ion-matrix sheaths for cylindrical and spherical electrodes," J. Appl. Phys., 1987, 62, 777. https://doi.org/10.1063/1.339858

J. T. Scheuer, M. Shamim, and J. R. Conrad, 1990 "Model of plasma source ion implantation in planar, cylindrical and spherical geometries," J. Appl. Phys., 67, 1241. https://doi.org/10.1063/1.345722

J. Brutscher, R. Günzel, and W. Möller, "Sheath dynamics in plasma immersion ion implantation," Plasma Sources Sci. Technol., 1996,5, 54. https://doi.org/10.1088/0963-0252/5/1/007

B. P. Wood, D. J. Rej, A. Anders, I. G. Brown, R. J. Faehl, S. M. Malik, and C. P. Munson, 2000 "Fundamentals of plasma immersion ion implantation," in Handbook of Plasma Immersion Ion Implantation and Deposition, A. Anders, Ed. New York: Wiley,ch. 4.

Rupesh Nawalakhe et al, , "Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings", Journal of Applied Polymer Science, 2013, 129,916. https://doi.org/10.1002/app.38804

E. Njatavidjaja, M. Kodama, K. Matsuzaki, K. Yasuda, T. Matsuda, M. Kogoma, "Hydrophilic modification of expanded polytetrafluoroethylene (ePTFE) by atmospheric pressure glow discharge (APG) treatment", Surf. Coat. Technol, 2006, 201,699. https://doi.org/10.1016/j.surfcoat.2005.12.017

G Borcia and N M D Brown, "Hydrophobic coatings on selected polymers in an atmospheric pressure dielectric barrier discharge" J Phys D Appl Phys, 2007, 40,1927. https://doi.org/10.1088/0022-3727/40/7/015

M.C. Kim, C.P. Klages," One-step process to deposit a soft super-hydrophobic film by filamentary dielectric barrier discharge-assisted CVD using HMCTSO as a precursor" Surf. Coat. Technol, 2009,204, 428. https://doi.org/10.1016/j.surfcoat.2009.08.002

Carlos Alema, Georgina Fabregat, Elaine Armelin, Jorge J. Buendı and Jordi Llorca, "Plasma surface modification of polymers for sensor applications", J. Mater. Chem. B 2018,6, 6515. https://doi.org/10.1039/C8TB01553H

K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser,", Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization - A Review", Plasma Process. Polym, 2006,3,392. https://doi.org/10.1002/ppap.200600021

Laurine Martocq and Timothy E. L. Douglas, "Amine-Rich Coatings to Potentially Promote Cell Adhesion, Proliferation and Differentiation, and Reduce Microbial Colonization: Strategies for Generation and Characterization", Coatings, 2021, 11, 983. https://doi.org/10.3390/coatings11080983

F.T. Marasescu, A. Lippitz, W.E.S. Unger, M.R. Wertheimer, "Nitrogen-rich plasma polymers: Comparison of films deposited in atmospheric- and low-pressure plasmas", Thin Solid Films, 2008,516,7406. https://doi.org/10.1016/j.tsf.2008.02.033

P.L. Girard, F. Mwale, M. Iordanova, C. Demers, P. Desjardins, M.R. Wertheimer, "Atmospheric pressure deposition of micropatterned nitrogen-rich plasma-polymer films for tissue engineering", Plasma Process Polym, 2005 ,2, 263. https://doi.org/10.1002/ppap.200400092

R. Morent, N. De Geyter, S. Van Vlierberghe, E. Vanderleyden, P. Dubruel, C. Leys, E. Schacht, "Deposition of Polyacrylic Acid Films by Means of an Atmospheric Pressure Dielectric Barrier Discharge" Plasma Chem. Plasma Process., 2009 29, 103. https://doi.org/10.1007/s11090-009-9167-1

L.J.Ward,W.C.E. Schofield, J.P.S. Badyal, A.J. Goodwin, P.J. Merlin, "Atmospheric Pressure Plasma Deposition of Structurally Well-Defined Polyacrylic Acid Films", Chem. Mater, 2003, 15,1466. https://doi.org/10.1021/cm020289e

Bernard Nisol,Claude Poleunis,Patrick Bertrand, and François Reniers, "Poly(ethylene glycol) Films Deposited by Atmospheric Pressure Plasma Liquid Deposition and Atmospheric Pressure Plasma-Enhanced Chemical Vapour Deposition: Process, Chemical Composition Analysis and Biocompatibility", Plasma Process Polymers , 2010, 7,715. https://doi.org/10.1002/ppap.201000023

Anders, A , "Metal plasma immersion ion implantation and deposition: a review", Surf. Coat. Technol, 1997,93,158. https://doi.org/10.1016/S0257-8972(97)00037-6

Chu, P. K , "Recent applications of plasma-based ion implantation and deposition to microelectronic, nanostructured, and biomedical materials", 2010Surf. Coat. Technol, 204, 2853. https://doi.org/10.1016/j.surfcoat.2010.01.045

Chu, P. K. & Chan, C, "Applications of plasma immersion ion implantation in microelectronics: a brief review", Surf. Coat. Technol, 2001,136, 151. https://doi.org/10.1016/S0257-8972(00)01046-X

Anders, A., "From plasma immersion ion implantation to deposition: a historical perspective on principles and trends", Surf. Coat. Technol, 2002, 156, 3. https://doi.org/10.1016/S0257-8972(02)00066-X

Anders, A, "Energetic deposition using filtered cathodic arc plasmas", Vacuum, 2002 ,67, 673. https://doi.org/10.1016/S0042-207X(02)00260-9

Tian, X. B., Chu, P. K., Fu, R. & Yang, S. Q, "Hybrid processes based on plasma immersion ion implantation: a brief review", Surf. Coat. Technol, 2004 ,186, 190. https://doi.org/10.1016/j.surfcoat.2004.04.049

Chu, P. K, " Bioactivity of plasma implanted biomaterials", Nucl. Instrum. Methods Phys. Res. B, 2006,242,1. https://doi.org/10.1016/j.nimb.2005.08.015

M Cisternas et al, ""Study of nitrogen implantation in Ti surface using plasma immersion ion implantation & deposition technique as biocompatible substrate for artificial membranes2020, Mater Sci Eng C Mater Biol Appl,113, 111002. https://doi.org/10.1016/j.msec.2020.111002

S. Mandl, R. Sader, G. Thorwart, D. Krause, H.-F. Zeilhofer, H. H. Horch, and B. Rauschenbach, "Investigation on plasma immersion ion implantation treated medial implants," Biomolecular Eng., 200219,129. https://doi.org/10.1016/S1389-0344(02)00025-4

Wei Zhang, Paul K. Chu, "Enhancement of antibacterial properties and biocompatibility of polyethylene by silver and copper plasma immersion ion implantation", Surface & Coatings Technology, 2008 ,203,909. https://doi.org/10.1016/j.surfcoat.2008.08.023

Han et al, 1997 "Polymer surface modification by plasma source ion implantation", Surface and Coatings Technology,93, 261. https://doi.org/10.1016/S0257-8972(97)00057-1

D.R McKenzie, Newton, and Ruch, "Modification of polymers by plasma-based ion implantation for biomedical applications", Surface & Coatings Technology ,2004,186, 239. https://doi.org/10.1016/j.surfcoat.2004.04.093

Xinying Chengae,JianFei, AlexeyKondyurin,KunkunFue,LinYee, Marcela M.M, Bilek and ShisanBaoag, "Enhanced biocompatibility of polyurethane-type shape memory polymers modified by plasma immersion ion implantation treatment and collagen coating: An in vivo study", Material Science and Engineering, 2019, 99, 863. https://doi.org/10.1016/j.msec.2019.02.032

H.Dong, and T.Bell, "State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties", Surface and Coatings Technology, 1999 ,111, 40. https://doi.org/10.1016/S0257-8972(98)00698-7

Z.M.Zeng, T.Zhanga, B.Y.Tang, X.B.Tian, and P.K.Chua, "Improvement of tribological properties of 9Cr18 bearing steel using metal and nitrogen plasma-immersion ion implantation", Surface and Coatings Technology, 1999, 115, 234. https://doi.org/10.1016/S0257-8972(99)00178-4

M. Niinomi, "Recent metallic materials for biomedical applications" Metall. Mater. Trans. A, 2002,33, 477. https://doi.org/10.1007/s11661-002-0109-2

E W Collings, "The physical metallurgy of titanium alloys", Metals Park, OH : American Society for Metals, 1984

Mitsuo Niinomi, "Mechanical properties of biomedical titanium alloys", Materials Science and Engineering: A, 1998,243, 231. https://doi.org/10.1016/S0921-5093(97)00806-X

Kathy Wang, 1996 "The use of titanium for medical applications in the USA", Materials Science and Engineering: A, 213, 134. https://doi.org/10.1016/0921-5093(96)10243-4

Hongqing Feng, Guomin Wang, Guosong Wu, Weihong Jin, Hao Wu, Paul K. Ch, "Plasma and ion-beam modification of metallic biomaterials for improved anti-bacterial properties", Surface and Coatings Technology, 140, 2016. https://doi.org/10.1016/j.surfcoat.2016.05.059

L. Sopchenski, et al. "Bioactive and antibacterial boron doped TiO2 coating obtained by PEO" Appl. Surf. Sci., 2018, ,458, 49. https://doi.org/10.1016/j.apsusc.2018.07.049

S.E. Afonso Camargo et al. "Anti-bacterial properties and biocompatibility of novel SiC coating for dental ceramic" J. Funct. Biomater., 2020, 11, 33. https://doi.org/10.3390/jfb11020033

M. Fazel et al."Osteogenic and antibacterial surfaces on additively manufactured porous ti-6Al-4V implants: combining silver nanoparticles with hydrothermally synthesized HA nanocrystals" Mater. Sci.Eng C, 2021, 120, 111745. https://doi.org/10.1016/j.msec.2020.111745

Xinxin Zhang, Xueqin Lu, You Lv, Lei Yang, Erlin Zhang, and Zehua Dong, "Enhancement of Corrosion Resistance and Biological Performances of Cu-Incorporated Hydroxyapatite/TiO2 Coating by Adjusting Cu Chemical Configuration and Hydroxyapatite Contents" ACS Appl. Bio Mater., 2021,4, 903. https://doi.org/10.1021/acsabm.0c01390

Huanga, , Duen-Kai Shiauh , Chiang-Sang Cheni,Jean-Heng Changj,Sang Wangb , Haobo Pank , & Mei-Fang Wuh "Nitrogen plasma immersion ion implantation treatment to enhance corrosion resistance, bone cell growth, and antibacterial adhesion of Ti-6Al-4V alloy in dental applications", Surface and Coatings Technology, 2019 ,365,179. https://doi.org/10.1016/j.surfcoat.2018.06.023

Alonso, F., Rinner, M., Loinaz, A., Onate, J. I., Ensinger, W. & Rauschenbach, B. "Characterization of Ti-6Al-4V modified by nitrogen plasma immersion ion implantation" ,Surf. Coat. Technol, 1997, 93, 305. https://doi.org/10.1016/S0257-8972(97)00065-0

Wan, G. J., Huang, N., Leng, Y. X., Yang, P., Chen, J. Y., Wang, J. & Sun, H, "TiN and Ti-O/TiN films fabricated by PIID-D for enhancement of corrosion and wear resistance of Ti- 6A1-4V", Surf. Coat. Technol, 2004 , 186, 136. https://doi.org/10.1016/j.surfcoat.2004.04.037

Liu, X. Y., Chu, P. K. & Ding, C. X, "Surface modification of titanium, titanium alloys, and related materials for biomedical applications", Mater. Sci. Eng. Rep., 2004, 47, 49. https://doi.org/10.1016/j.mser.2004.11.001

Kokubo, T., Kim, H. M. & Kawashita, M, "Novel bioactive materials with different mechanical properties", Biomaterials, 2003, 24, 2161. https://doi.org/10.1016/S0142-9612(03)00044-9

Jonasova, L., Muller, F. A., Helebrant, A., Strnad, J. & Greil, P, "Biomimetic apatite formation on chemically treated titanium", Biomaterials,25, 1187, 2004. https://doi.org/10.1016/j.biomaterials.2003.08.009

J. Hasan, S. Jain, K. Chatterjee, "Nanoscale topography on black titanium imparts multi- biofunctional properties for orthopaedic applications" Sci. Rep., 7,1, 2017. https://doi.org/10.1038/srep41118

Xie, Y. T., Liu, X. Y., Huang, A. P., Ding, C. X. & Chu, P. K, "Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation", Biomaterials, 26, 6129, 2005. https://doi.org/10.1016/j.biomaterials.2005.03.032

Liu, X. Y., Zhao, X. B., Fu, R. K. Y., Ho, J. P. Y., Ding, C. X. & Chu, P. K, 2005 " Plasma- treated nanostructured TiO2 surface supporting biomimetic growth of apatite", Biomaterials, 26,6143. https://doi.org/10.1016/j.biomaterials.2005.04.035

Poon, R.W. Y., Ho, J. P. Y., Liu, X. Y., Chung, C. Y., Chu, P. K.,Yeung, K.W. K., Lu,W.W.& Cheung, K.M. C, 2005 "Improvements of anti-corrosion and mechanical properties of NiTi orthopaedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation", Nucl. Instrum. Methods Phys,237, 411. https://doi.org/10.1016/j.nimb.2005.05.030

Poon, R. W. Y., Ho, J. P. Y., Liu, X. Y., Chung, C. Y., Chu, P. K., Yeung, K. W. K., Lu, W. W. & Cheung,. 2005 "Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys" Mater. Sci. Eng. A, 390, 444. https://doi.org/10.1016/j.msea.2004.08.061

Poon, R. W. Y., Ho, J. P. Y., Liu, X. Y., Chung, C. Y., Chu, P. K., Yeung, K. W. K., Lu, W. W. & Cheung, 2005 "Formation of titanium nitride barrier layer in nickel-titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance", Thin Solid Films, 488,20. https://doi.org/10.1016/j.tsf.2005.04.002

Inman, R. D., Gallegos, K. V., Brause, B. D., Redecha, P. B. & Christian, 1984 " Clinical and microbial features of prosthetic joint infection" Am. J. Med.,77, 47. https://doi.org/10.1016/0002-9343(84)90434-0

Shelemin A et al, 2016 " Preparation of biomimetic nano-structured films with multi-scale roughness", J. Phys. D: Appl. Phys, 49,254001. https://doi.org/10.1088/0022-3727/49/25/254001

Bourkoula A et al, "Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces", J. Phys. D: Appl. Phys, vol.49, pp-304002, 2016. https://doi.org/10.1088/0022-3727/49/30/304002

G Divya Deepak, NK Joshi, U Pal, Ram Prakash, "Electrical characterization of atmospheric pressure dielectric barrier discharge-based cold plasma jet using ring electrode configuration, Laser and Particle Beams, vol.34, pp-615, 2016. https://doi.org/10.1017/S0263034616000501

G Divya Deepak, NK Joshi, Dharmendra Kumar Pal, Ram Prakash" 2017 A low power miniaturized dielectric barrier discharge based atmospheric pressure plasma jet", Review of Scientific Instruments,88, 013505. https://doi.org/10.1063/1.4974101

G Divya Deepak, NK Joshi, Ram Prakash, 2018 "Model analysis and electrical characterization of atmospheric pressure cold plasma jet in pin electrode configuration" , AIP Advances, 8, 055321. https://doi.org/10.1063/1.5023072

G Divya Deepak, Narendra Kumar Joshi, Ram Prakash, Udit Pal, 2018 "Electrical characterization of argon and nitrogen based cold plasma jet", European Physical Journal Applied Physics, 83, 20801. https://doi.org/10.1051/epjap/2018180057

G Divya Deepak, NK Joshi, Ram Prakash,"Modal analysis of dielectric barrier discharge- based argon cold plasma jet",Laser and Particle Beams, 2020, 38, 229. https://doi.org/10.1017/S0263034620000294

G Divya Deepak, Narendra Kumar Joshi, Ram Prakash, 2020 "The Modelling and Characterization of Dielectric Barrier Discharge-Based Cold Plasma Jets", Cambridge Scholars Publishing

G Divya Deepak, "Review on recent advances in cold plasma technology", European Physical Journal Applied Physics, 2022, 97, 39. https://doi.org/10.1051/epjap/2022210275

G Divya Deepak, 2022 "Biomedical Applications of Cold Plasma", Journal of Clinical and Diagnostic Research,97,KE-01. https://doi.org/10.7860/JCDR/2022/53693.16177

Cao, H., Liu, X., Meng, F. & Chu, 2011 "Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects", Biomaterials,32, 693. https://doi.org/10.1016/j.biomaterials.2010.09.066

Hongqing Feng, Guomin Wang, Guosong Wu, Weihong Jin, Hao Wu, Paul K. Ch, 2016Plasma and ion-beam modification of metallic biomaterials for improved anti-bacterial properties, Surface and Coatings Technology, 2016, 306, 140. https://doi.org/10.1016/j.surfcoat.2016.05.059

Zhang, W. & Chu, P. K, "Enhancement of antibacterial properties and biocompatibility of polyethylene by silver and copper plasma immersion ion implantation", 2008, Surf. Coat. Technol, 203, 909. https://doi.org/10.1016/j.surfcoat.2008.08.023

Zhang, W., Ji, J., Zhang, Y., Yan, Q., Kurmaev, E. Z., Moewes, A., Zhao, J. & Chu, "Effects of NH3, O2, and N2 co-implantation on Cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene", Appl. Surf. Sci, 2007, 253, 8981. https://doi.org/10.1016/j.apsusc.2007.05.019

Zhang, W., Luo, Y., Wang, H., Jiang, J., Pu, S. & Chu, "Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation" Acta Biomatter, 2008, 4,2028. https://doi.org/10.1016/j.actbio.2008.05.012

Wang, H., Ji, J., Zhang, W., Zhang, Y., Jiang, J., Wu, Z., Pu, S. & Chu, "Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate)",Acta Biomater, 2009,5,279. https://doi.org/10.1016/j.actbio.2008.07.017

Huang , C.J Pan , S.C.H Kwok , P Yang , Y.X Leng , J.Y Chen, "Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation-deposition" Surf. Coat. Technol., 2004,186, 299. https://doi.org/10.1016/j.surfcoat.2004.02.046

Published

2024-03-05

How to Cite

Deepak, G. D., Atul and Anne, G. (2024) “Plasma-based Surface Modification Applications of Biomaterials – A Review”, The International Journal of Multiphysics, 18(1), pp. 47-66. doi: 10.21152/1750-9548.18.1.47.

Issue

Section

Articles