Research on online measurement method of image target size based on binocular vision
DOI:
https://doi.org/10.21152/1750-9548.18.1.1Abstract
This article provided a detailed analysis and discussion on the key points that affect the calibration accuracy of binocular cameras. A planar calibration board based on solid dot marker guided matching was designed, and its superiority over traditional calibration boards through experiments were verified. At the same time, an improved camera calibration method based on two-step RANSAC algorithm was proposed, and the calibration flow of binocular camera was designed for the improved calibration method. This method solves the problem of difficult target size calibration in images and has broad application prospects in the fields of online measurement of image targets and small target image recognition.
References
Zhang, A. S., Chen, Y. P., Chen, D. W., & Tang, H., “Application of three coordinate measuring machine in reverse engineering of air compressor parts”, Mechanics and Materials Science: Proceedings of the 2016 International Conference on Mechanics and Materials Science (MMS2016), Guangzhou, China, 2017, p. 489-495. https://doi.org/10.1142/9789813228177_0062
Wei, Z., & Zhang, G., “Inspecting verticality of cylindrical workpieces via multi-vision sensors based on structured light”, Optics and Lasers in Engineering, 2005, 43(10): p. 1167-1178. https://doi.org/10.1016/j.optlaseng.2004.06.025
Jiang, L., Wu, S., Wu, D., & Eng, H., “Head modeling using color unequal phase stepping method”, 12th International Conference on Image Analysis and Processing, 2003.Proceedings., Mantova, Italy, IEEE. 2003, p. 94-98. https://doi.org/10.1109/ICIAP.2003.1234032
Singh, R., Baby, B., Suri, A., & Anand, S., “Comparison of laser and structured light scanning techniques for neurosurgery applications”, 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, IEEE, 2016, p. 301-305. https://doi.org/10.1109/SPIN.2016.7566708
Rubez, G., Etancelin, J. M., Vigouroux, X., Krajecki, M., Boisson, J. C., & Hénon, E., “GPU accelerated implementation of NCI calculations using promolecular density”, Journal of Computational Chemistry, 2017, 38(14): p. 1071-1083. https://doi.org/10.1002/jcc.24786
Yu, S., Zhang, J., Yu, X., Sun, X., & Wu, H., “Unequal-period combination approach of gray code and phase-shifting for 3-D visual measurement”, Optics Communications, 2016, 374: p. 97-106. https://doi.org/10.1016/j.optcom.2016.04.042
Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J., “Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables”, Food and Bioprocess Technology, 2011, 4(4): p. 487-504. https://doi.org/10.1007/s11947-010-0411-8
Tsai, R. Y., “An efficient and accurate camera calibration technique for 3D machine vision”, Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1986, p. 364-374.
Zhang, Z., “A flexible new technique for camera calibration”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): p. 1330-1334. https://doi.org/10.1109/34.888718
Luong, Q. T., & Faugeras, O. D., “Self-calibration of a moving camera from point correspondences and fundamental matrices”, International Journal of Computer Vision, 1997, 22(3): p. 261-289. https://doi.org/10.1023/A:1007982716991
Krüger, L., & Wöhler, C., “Accurate chequerboard corner localisation for camera calibration”, Pattern Recognition Letters, 2011, 32(10): p. 1428-1435. https://doi.org/10.1016/j.patrec.2011.04.002
Bennett, S., & Lasenby, J., “ChESS-Quick and robust detection of chess-board features”, Computer Vision and Image Understanding, 2014, 118(1): p. 197-210. https://doi.org/10.1016/j.cviu.2013.10.008
Chu, J., GuoLu, A., & Wang, L., “Chessboard corner detection under image physical coordinate”, Optics and Laser Technology, 2013, 48(6): p. 599-605. https://doi.org/10.1016/j.optlastec.2012.11.010
Luo, P. F., & Wu, J., “Easy calibration technique for stereo vision using a circle grid”, Optical Engineering, 2008, 47(3): p. 281-291. https://doi.org/10.1117/1.2897237
Jiang, G., & Quan, L., “Detection of concentric circles for camera calibration”, Tenth IEEE International Conference on Computer Vision (ICCV'05), Beijing, China, IEEE, 2005, 1: p. 333-340. https://doi.org/10.1109/ICCV.2005.73
Ma, J., & Li, B., “A method of camera calibration by iterative optimization algorithm”, Proceedings of the 2013 International Conference on Advanced Mechatronic Systems, Luoyang, China, IEEE, 2013, p. 302-305. https://doi.org/10.1109/ICAMechS.2013.6681798
Zhou, F., Cui, Y., Peng, B., & Wang, Y., “A novel optimization method of camera parameters used for vision measurement”, Optics and Laser Technology, 2012, 44(6): p. 1840-1849. https://doi.org/10.1016/j.optlastec.2012.01.023
Ricolfe-Viala, C., & Sanchez-Salmeron, A. J., “Camera calibration under optimal conditions”, Optics Express, 2011, 19(11): p. 10769-10775. https://doi.org/10.1364/OE.19.010769
Muruganantham, C., Jawahar, N., Ramamoorthy, B., & Giridhar, D., “Optimal settings for vision camera calibration”, The International Journal of Advanced Manufacturing Technology, 2009, 42(7): p. 736-748. https://doi.org/10.1007/s00170-008-1634-y
Harris, C., & Stephens, M., “A Combined corner and edge detector”, Alvey Vision Conference, 1988, 15(50): p. 10-5244. https://doi.org/10.5244/C.2.23
Fischler, M. A., & Bolles, R. C., “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the ACM, 1981, 24(6): p. 381-395. https://doi.org/10.1145/358669.358692
Canny, J., “Computational approach to edge detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): p. 679-698. https://doi.org/10.1109/TPAMI.1986.4767851
Lowe, D. G., “Distinctive Image features from scale-invariant keypoints”, International Journal of Computer Vision, 2004, 60(2): p. 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
Bergholm, F., “Edge focusing”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(6): p. 726-741. https://doi.org/10.1109/TPAMI.1987.4767980
He, S., Tong, Z., Ma, G., Fan, M., Lingzhou, L., & Tang, S., Research on stereo vision matching algorithm for rescue robot”, 2017 International Conference on Robotics and Automation Sciences (ICRAS), Hong Kong, China, IEEE, 2017, p. 35-38. https://doi.org/10.1109/ICRAS.2017.8071912
Nalpantidis, L., & Gasteratos, A., “Stereo vision for robotic applications in the presence of non-ideal lighting conditions”, Image and Vision Computing, 2010, 28(6): p. 940-951. https://doi.org/10.1016/j.imavis.2009.11.011
Li, Z. Y., Song, L. M., Xi, J. T., Guo, Q. H., Zhu, X. J., & Chen, M. L., “A stereo matching algorithm based on SIFT feature and homography matrix”, Optoelectronics Letters, 2015, 11(5): p. 390-394. https://doi.org/10.1007/s11801-015-5146-3
Li, C. L., Chang, Z. Y., & Mo, R., “Phase-based stereo matching by using improved LMedS algorithm and greedy strategy”, Journal of Computer-Aided Design and Computer Graphics, 2014, 26(11): p. 2047-2055. https://doi.org/10.3969/j.issn.1003-9775.2014.11.017
Huang, X. D., Meng, T. W., Ding, D. X., & Wang, Z. H., “A novel phase difference frequency estimator based on forward and backward sub-segmenting”, Acta Physica Sinica, 2014, 63(21): p. 214304. https://doi.org/10.7498/aps.63.214304
Published
How to Cite
Issue
Section
Copyright (c) 2024 H Chen
This work is licensed under a Creative Commons Attribution 4.0 International License.