A Numerical Study to Investigate the Hydrodynamic Properties of Nanowire Motion in Liquid
DOI:
https://doi.org/10.21152/1750-9548.17.3.333Abstract
Manipulating micro(nano)-sized entities in liquid environment is a challenging yet necessary task in nanoscience and nanotechnology development. Due to the small dimensions, viscous behavior dominates the micro(nano)-sized obejcts motion. In this study, a computational fluid dynamic (CFD) approach has been used to investigate hydrodynamic effects on a nanowire (NM) translating an rotating about its long and short axis. Several numerical methods dealing with solid motion in fluid, including some CFD methods and Finite element analysis (FEA), have been compared. The change in drag coefficient with NW length, NW diameter, translational velocity, rotation speed, and wall effects has been researched. As a model, nanowires with 1-10 µm dimensions and 50 nm-250 nm diameters were investigated in liquid, with velocities of 0.5-500 µm/s. Nanowire is rotated about its long axis with an angular velocity of ω=0.25π, 0.5π, 1.0π, 2.0π rad/s, and about its short axis with a fluid flow allow the rotation of the nanowire whose one end is contsrained to a rotational motion around x and y axis. These models were also compared with the existing analytical models. Good agreement was observed between the numerical results and analytical calculations. The FEA model is also repeated in the closed boundary to investigate the wall effects on the nanowire’s motion in liquid environment.
References
Dayeh S. A., Aplin D. P. R., Zhou X., Yu P. K.L., Yu E.T., Wang D. (2007). "High electron mobility InAs nanowire field-effect transistors," Small, vol. 3, pp. 326-332. https://doi.org/10.1002/smll.200600379
Stevenson C. P. T., Martensson T., Tragardh J., Larsson C., Rask M., Hessmann D., Samuelson L., Ohlsson J., (2008). "Monolithic GaAs/InGaP nanowire light emitting diodes on silicon," Nanotechnology, vol. 19. https://doi.org/10.1088/0957-4484/19/30/305201
Yan Z., Pelton M., Vigderman L., Zubarev E. R., and Scherer N. F., (2013). "Why Single-Beam Optical Tweezers Trap Gold Nanowires in Three Dimensions, " ACS Nano, vol.7, No.10. https://doi.org/10.1021/nn403936z
Berezney J.P., Valentine M. T., (2022). " A compact rotary magnetic tweezers device for dynamic material analysis, " Review of Scientific Instruments, vol. 93, 093701. https://doi.org/10.1063/5.0090199
Dodampegama S., Mudugamuwa A., Konara M., Perera N., De Silva D., Roshan U., Amarasinghe R., Jayavera N. And Tamura H., (2022). " A Review on the Motion of Magnetically Actuated Bio-Inspired Microrobots, " Appl. Sci. 12(22), 11542. https://doi.org/10.3390/app122211542
Zhang, W., Wen, M., Liu, P., Yang, G., & Lei, H. (2021). " Microsphere-assisted manipulation of a single Ag nanowire, " Nanophotonics, vol. 10 (10), 2729-2736. https://doi.org/10.1515/nanoph-2021-0234
Marago, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G., & Ferrari, A. C. (2013). " Optical trapping and manipulation of nanostructures, " Nature nanotechnology, vol. 8 (11), 807-819. https://doi.org/10.1038/nnano.2013.208
Rawtani, D., Sajan, T., Twinkle R, A., & Agrawal, Y. K. (2015). " Emerging strategies for synthesis and manipulation of nanowires: a review, " Reviews on advanced materials science, vol. 40 (2).
Bentley A. K., Jeremy S., Arthur B. E., and Crone W. C., (2004) "Magnetic manipulation of copper-tin nanowires capped with nickel ends," Nano Lett. vol. 4, pp. 487-490. https://doi.org/10.1021/nl035086j
Bentley A. K., Farhoud M., Arthur B. E., Nickel A. M. L., Lisensky G. C. And Crone W. C., (2005). "Template synthesis and magnetic manipulation of nickel nanowires," J. Chem. Educ. vol. 82, pp. 765- 768. https://doi.org/10.1021/ed082p765
Fan D. L., Zhu F. Q., Cammarata R. C., and Chien C. L., (2005). "Controllable high-speed rotation of nanowires," Phys. Rev. Lett. vol. 94. https://doi.org/10.1103/PhysRevLett.94.247208
Hangarter C. M. and Myung N. V., (2005). "Magnetic alignment of nanowires," Chem. Mater. vol. 17, pp. 1320-1324. https://doi.org/10.1021/cm047955r
Gao C., Li W., Morimoto H., Nagaoka Y., and Maekawa T., (2006). "Magnetic carbon nanotubes: Synthesis by electrostatic selfassembly approach and application in biomanipulations," J. Phys. Chem. B vol. 110, pp. 7213-7220. https://doi.org/10.1021/jp0602474
Yan, R., Gargas, D., and Yang, P. (2009). "Nanowire photonics," Nature photonics, vol. 3 (10), 569-576. https://doi.org/10.1038/nphoton.2009.184
Yu, K., Yi, J., & Shan, J. W. (2018). "Real-time motion planning of multiple nanowires in fluid suspension under electric-field actuation. " International Journal of Intelligent Robotics and Applications, vol. 2 (4), 383-399. https://doi.org/10.1007/s41315-018-0072-8
Mechlera Á., Piorek B., Lal R., and Banerjee S., (2004). "Nanoscale velocity-drag force relationship in thin liquid layers measured by atomic force microscopy, " Applied Physics Letters, vol. 85, Number 17 3881. https://doi.org/10.1063/1.1808504
H. Lamb, Hydrodynamics (Dover, New York, 1945), 6th ed., ISBN 0-486- 60256-7.
K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)
Brenner, H. (1961) " The slow motion of a sphere through a viscous fluid towards a plane surface. " Chem. Eng Sci., 16, 242-251. https://doi.org/10.1016/0009-2509(61)80035-3
Dhont J. K., and Briels W.J., "Rod-like Brownian particles in shear flow, Soft Matter: Complex Colloidal Suspensions, " WILEY-VCH Verlag Berlin GmbH, edited by G. Gompper, and M. Schick, 2, (2006).
Yan Zongyi. Low Reynolds Number Fluid Theory, (Peking University Press 2002).
Neves A. A. R., Camposeo A., Pagliara S., Saija R., Borghese F., Denti P., Lati M. A., Cingolani R., Marago M. O., and Pisignano D., (2010) "Rotational dynamics of optically trapped nanofibers, " Optics Express, vol. 18. No. 2. https://doi.org/10.1364/OE.18.000822
Ghosh A., Mandal P., Karmakar S., and Ghosh A., (2013). "Analytical theory and stability analysis of an elongated nanoscale object under external torque, " Phys. Chem, vol. 15, 10817. https://doi.org/10.1039/c3cp50701g
De La Torre J. G., Bloomfield V. A., (1977). "Hydrodynamic Properties of Macromolecular Complexes I. Translation, " Biopolymers, vol. 16 (8), 1747- 1763. https://doi.org/10.1002/bip.1977.360160811
Tirado M. M., and De La Torre J. G., (1979). "Translational Friction Coefficients of Rigid, Symmetric Top Macromolecules. Application to circular cylinders, " Journal of Chemical Physics, 71,438613. https://doi.org/10.1063/1.438613
Ferziger, J.H.; Perić, M. Computational Methods for Fluid Dynamics; (Sprigner: Berlin/Heidelberg, Germany, 1999) https://doi.org/10.1007/978-3-642-98037-4
Wang, Q., & Wang, Z. (2022). "Quantitative Analysis of Drag Force for Task-Specific Micromachine at Low Reynolds Numbers, " Micromachines, vol. 13 (7), 1134. https://doi.org/10.3390/mi13071134
Published
How to Cite
Issue
Section
Copyright (c) 2023 S Özer

This work is licensed under a Creative Commons Attribution 4.0 International License.