Simulation on forming and penetrating target plate of tungsten alloy pre-fragment warhead
DOI:
https://doi.org/10.21152/1750-9548.17.2.217Abstract
To study the damage ability of tungsten alloy pre-fragments warhead, its forming process is analyzed by static explosion experiment and simulation. The velocity attenuation curve of the spherical pre-fragments is obtained with a ballistic gun firing experiment, where the tungsten alloy pre-fragments penetrate the steel targets at different angles. The results show that in a certain range, the velocity attenuation of tungsten alloy pre-fragments with certain quality is slow, and the influence of air resistance is small. Compared with the theoretical formula, the error rate is also small. At the same time, the penetration angle of tungsten alloy preformed fragments is greater than 30°, which can well complete the penetration of steel targets. The penetration effect is significantly reduced when the angle is less than 30°. The results can provide a theoretical basis for the research of performed fragment warheads.
References
Baek, J.H., Lee, S.P., Lee, Y.J., Kim, S.U., Design of Subminiaturized Natural Fragment Warhead based on the Analysis of Warhead Effectiveness. Journal of the Korean Society for Precision Engineering, 2018, 35(10): p. 933-941. https://doi.org/10.7736/KSPE.2018.35.10.933
Dhote, K. D., Murthy, K. P. S., Rajan, K. M., & Sucheendran, M. M., Quantification of projection angle in fragment generator warhead. Defence Technology, 2014, 10(2): p. 177-183. https://doi.org/10.1016/j.dt.2014.05.001
Zhao, J., Fu, J.P., Chen, Z.G., Guo, Z.Y., Zhang, J., Zheng, C.J., Analysis of Forming and Spreading of Pre-Formed Fragment Warhead. Journal of Ordnance Equipment Engineering, 2019, 40(12): p. 62-66. https://doi.org/10.11809/ bqzbgcxb2019.12.013
Wei, J.F., Jiao, Q.J., Wu, C.,Experiment and Simulation on Premade Fragment Warhead. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(3): p. 39-41+45. https://doi.org/10.3969/j.issn.1673-9728.2004.03.015
Dhote, K. D., & Deodhar, R. S., Effect of fragment dispersion on damage assessment of a directional fragment generator. International Journal of Damage Mechanics, 2017, 27(4): p. 568-577. https://doi.org/10.1177/1056789517690215
Dhote, K. D., Murthy, K. P., Rajan, K. M., & Sucheendran, M. M., Statistics of Fragment Dispersion by Explosion in a Fragment Generator Warhead. Central European Journal of Energetic Materials, 2016, 13(1): p. 183-197. https://doi.org/10.22211/cejem/64971
Mei, R.B., Feng, T.Y., Huang, B., Zhang, H.J., Li, M.Y., Zhang, B.H., Numerical simulation and structural optimization of cylindrical prefabricated fragments under explosion impact. Journal of Plasticity Engineering, 2022, 29(2): p. 197-203. https://doi.org/10.3969/j.issn.1007-2012.2022.02.02
Mao, L., Jiang, C.L., Yan, H.X., Zhang, L.Y., Wang, C., Numerical simulation and experiment on aim able warhead of premade fragment. Journal of Vibration and Shock, 2012, 31(13): p. 66-70+75. https://doi.org/10.13465/j.cnki.jvs.2012.13.025
Roisman, I. V., Weber, K., Yarin, A. L., Hohler, V., & Rubin, M. B., Oblique penetration of a rigid projectile into a thick elastic–plastic target: theory and experiment. International Journal of Impact Engineering, 1999, 22(7): p. 707-726. https://doi.org/10.1016/S0734-743X(99)00014-7
Zhang, J., Xu, Y.X., Liu, T.L., Zhang, P., Oblique Penetration effect of a Tungsten Ball on High Hardness Steel. Explosion and Shock Waves, 2022, 42(2): p. 71-82. https://doi.org/10.11883/bzycj-2021-0427
Ma, Y., He, Y., Wang, C.T., He, Y., Guo, L., Response behavior of double layer tungsten fragments under detonation loading. Journal of Northwestern Polytechnical University, 2022, 40(4): p. 819-828. Doi: 10.1051/jnwpu /20224040819
Rittel, D., & Weisbrod, G., Dynamic fracture of tungsten base heavy alloys. International Journal of Fracture, 2001, 112: p. 87-98. https://doi.org/10.1023/A:1013581609836
Clayton, J., Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. Journal of the Mechanics and Physics of Solids, 2005, 53(2): p. 261-301. https://doi.org/10.1016/j.jmps. 2004.06.009
Yu, Z., & Shi, D., Study on Fragment Velocity Measurement Technology of Prefabricated Fragment Warhead. 2018 3rd International Conference on Materials Science, Machinery and Energy Engineering, 2018, p. 304-308. https://doi.org/10.23977/msmee.2018.72150
Wang, Z., Yin, J., Li, X., & Yi, J., Effect of Wood Medium on Dispersion Parameters of Prefabricated Spherical Fragments in Forest. Applied Sciences, 2022, 12(22): p. 11333. https://doi.org/10.3390/app122211333
Bai, C., Wang, H., & Feng, C., Analysis of criteria for assessing safety distance for focused warhead fragments based on CDEM. Mathematical Problems in Engineering, 2019, 2019: p. 8735481. https://doi.org/10.1155/2019/8735481
Wang, Y., Li, W., Zhu, G., & Li, W.,Oblique Penetration of a Circular Pipe Target by a Prefabricated Fragment. International Journal of Structural Stability and Dynamics, 2019, 19(10): p. 1950119. https://doi.org/10.1142/S0219455419501190
Wang, H., Bai, C., Feng, C., Xue, K., & Zhu, X., An efficient CDEM-based method to calculate full-scale fragment field of warhead. International Journal of Impact Engineering, 2019, 133: p. 103331. https://doi.org/10.1016/j.ijimpeng.2019.103331
Zuo, T., Study on the Low Collateral Damage Performance of CERP Shell Structure. Beijing Institute of Technology, 2016. https://doi.org/10.26948/d.cnki.gbjlu.2016.000570
Wang, M., Yang, M.C., Luo, R.M., Tang, E.L., Numerical Simulation on the Adiabatic Shear Failure at Cratering Stage for Tungsten Alloy Long Rod Penetrator Piercing into Armor. Journal of Vibrtion and Shock, 2016, 35(18): p. 111-116. https://doi.org/10.13465/j.cnki.jvs.2016.18.018
Cheng, C., Xu, L., Pang, Z., Du, Z., Wang, M., & Chen, X., Fragmentation characteristics of PELE shell perforating thin metal target plate. Mechanics of Advanced Materials and Structures, 2020, 29(8): p. 1198-1209. https://doi.org/10.1080/15376494.2020.1811925
Cheng, C., Du, Z. H., Chen, X., Xu, L. Z., Du, C. X., Han, J. L., & Wang, X. D., Damage of multi-layer spaced metallic target plates impacted by radial layered PELE. Defence Technology, 2020, 16(1): p. 201-207. https://doi.org/10.1016/j.dt.2019.05.002
Published
How to Cite
Issue
Section
Copyright (c) 2023 S Zhao, S Yuan, C Cheng, X S Shi, Y Fu, Y C Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.