Vector Control of Permanent Magnet Synchronous Motor Based on MRAS Method
DOI:
https://doi.org/10.21152/1750-9548.16.2.119Abstract
In recent years, the application range of electric energy in modern industry has gradually expanded. Permanent magnet synchronous motor has the characteristics of high efficiency and energy saving, and has obvious advantages in traction application. In order to achieve good vector control of permanent magnet synchronous motor in the full speed range, Research on model reference adaptive system (MRAS) and pulsating high frequency injection method to construct the permanent magnet synchronous motor vector control system, and combined with the flux weakening control algorithm to control the motor under the condition of limited inverter output, so as to realize the sensorless vector control of the motor in the full speed range. The difference between the estimated value of the algorithm and the actual value is compared on the actual experimental platform to verify the feasibility of the control algorithm. The experimental results show that, Under medium and high-speed working conditions, the motor speed and rotor position tracking accuracy of MRAS algorithm is high, and the tracking error is less than 0.01rad. The pulsating high-frequency injection method can accurately track the permanent magnet synchronous motor under low-speed working conditions, the speed error is less than 1n / R / min, and the rotor position error is less than 0.03rad. The static and dynamic performance of the control system is good, It can better deal with the sudden change of motor load. Using MRAS algorithm and pulsating high frequency injection method to control permanent magnet synchronous motor in full speed range is of great significance to improve the speed control performance of permanent magnet synchronous motor.
References
Chen, J. and Y. Zhang, Dual-Vector Model Predictive Current Control of Permanent Magnet Synchronous Motor Drives With the Segment Golden Search Method. IEEE Access, 2020. 8: p. 183826-183846. DOI: http://dx.doi.org/10.1109/ACCESS.2020.3026542
Li, C., T.N. Shi, Y. Yan, Z.Q. Zhou, and C.L. Xia, Predictive control with optimal vector sequence for permanent magnet synchronous motors. Journal of Power Electronics, 2020. 20(2): p. 553-565. DOI: http://dx.doi.org/10.1007/s43236-020-00039-1
Niu, S., Y. Luo, W. Fu, and X.D. Zhang, An Indirect Reference Vector Based Model Predictive Control for a Three-Phase PMSM Motor. IEEE Access, 2020. 8: p. 29435 - 29445. DOI: http://dx.doi.org/10.1109/ACCESS.2020.2968949
Zhao, B., H. Li, and J. Mao, Double-objective finite control set model-free predictive control with DSVM for PMSM drives. Journal of Power Electronics, 2019. 19(1): p. 168-178. DOI: http://dx.doi.org/10.6113/JPE.2019.19.1.168
Li, G., J. Hu, Y. Li, and J. Zhu, An Improved Model Predictive Direct Torque Control Strategy for Reducing Harmonic Currents and Torque Ripples of Five-Phase Permanent Magnet Synchronous Motors. IEEE Transactions on Industrial Electronics, 2019. 66(8): p. 5820-5829. DOI: http://dx.doi.org/10.1109/TIE.2018.2870359
Yang, C., Z. Che, and L. Zhou, Composite Feedforward Compensation for Force Ripple in Permanent Magnet Linear Synchronous Motors. Journal of Shanghai Jiaotong University (Science), 2019. 24(6): p. 782-788. DOI: http://dx.doi.org/10.1007/s12204-019-2111-5
Li, S., H. Won, X. Fu, M. Fairbank, D.C. Wunsch, and E. Alonso, Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results. IEEE Transactions on Cybernetics, 2019. 50(7): p. 3218 - 3230. DOI: http://dx.doi.org/10.1109/TCYB.2019.2897653
Zheng, Z. and D. Sun, Model Predictive Flux Control With Cost Function-Based Field Weakening Strategy for Permanent Magnet Synchronous Motor. IEEE Transactions on Power Electronics, 2019. 35(2): p. 2151-2159. DOI: http://dx.doi.org/10.1109/TPEL.2019.2921361
Kuang, Z., S. Wu, B. Du, H. Xu, S. Cui, and C.C. Chan, Thermal Analysis of Fifteen-Phase Permanent Magnet Synchronous Motor Under Different Fault Tolerant Operations. IEEE Access, 2019. 7: p. 81466-81480. DOI: http://dx.doi.org/10.1109/ACCESS.2019.2921993
Wang, S., D. Peng, and Z. Wu, Embedded Position Detection for Permanent Magnet Synchronous Motor With Built-In Magnets. IEEE Sensors Journal, 2019. 19(21): p. 9818-9825. DOI: http://dx.doi.org/10.1109/JSEN.2019.2928336
Khiabani, A.G. and A. Heydari, Optimal Torque Control of Permanent Magnet Synchronous Motors Using Adaptive Dynamic Programming. IET Power Electronics, 2020. 13(12): p. 2442-2449. DOI: http://dx.doi.org/10.1049/iet-pel.2019.1339
Baneira, F., J. Doval-Gandoy, A.G. Yepes, and O. Lopez, DC-Current Injection With Minimum Torque Ripple in Interior Permanent-Magnet Synchronous Motors. IEEE Transactions on Power Electronics, 2020. 35(2): p. 1176-1181. DOI: http://dx.doi.org/10.1109/TPEL.2019.2932012
Lee, K. and Y. Han, MTPA Control Strategy Based on Signal Injection for V/f Scalar-Controlled Surface Permanent Magnet Synchronous Machine Drives. IEEE Access, 2020. 8: p. 96036 - 96044. DOI: http://dx.doi.org/10.1109/ACCESS.2020.2997087
Xu, Y., X. Ding, J. Wang, and Y. Li, Three-vector-based low-complexity model predictive current control with reduced steady-state current error for permanent magnet synchronous motor. IET Electric Power Applications, 2020. 14(2): p. 305-315. DOI: http://dx.doi.org/10.1049/iet-epa.2019.0108
Deng, W., X. Fu, and W. Xie, Reduction of Common-Mode Voltage in Matrix Convert-Fed Permanent Magnet Synchronous Motor System With Rotating Vectors. IEEE Access, 2020. 8: p. 205894-205901. DOI: http://dx.doi.org/10.1109/ACCESS.2020.3037466
Xie, M. and L. Xie, Decoupling Control of Permanent Magnet Synchronous Motor With Support Vector Regression Inverse System Method. IEEE Access, 2020. 8: p. 212687-212698. DOI: http://dx.doi.org/10.1109/ACCESS.2020.3039053
Chen, Z., H. Zhang, W. Tu, G. Luo, D. Manoharan, and R. Kennel, Sensorless Control for Permanent Magnet Synchronous Motor in Rail Transit Application Using Segmented Synchronous Modulation. IEEE Access, 2019. 7: p. 76669-76679. DOI: http://dx.doi.org/10.1109/ACCESS.2019.2921916
Cui, K., C. Wang, L. Gou, and Z. An, Analysis and Design of Current Regulators for PMSM Drives Based on DRGA. IEEE Transactions on Transportation Electrification, 2020. 6(2): p. 659-667. DOI: http://dx.doi.org/10.1109/TTE.2020.2993632
Lu, W., D. Zheng, Y. Lu, K. Lu, L. Guo, W. Yan, and J. Luo, New Sensorless Vector Control System With High Load Capacity Based on Improved SMO and Improved FOO. IEEE Access, 2021. 9: p. 40716-40727. DOI: http://dx.doi.org/10.1109/ACCESS.2021.3065040
Lee, K.W. and S.I. Kim, Dynamic Performance Improvement of a Current Offset Error Compensator in Current Vector-Controlled SPMSM Drives. IEEE Transactions on Industrial Electronics, 2019. 66(9): p. 6727-6736. DOI: http://dx.doi.org/10.1109/TIE.2018.2877162
Anuchin, A., A. Dianov, and F. Briz, Synchronous Constant Elapsed Time Speed Estimation Using Incremental Encoders. IEEE/ASME Transactions on Mechatronics, 2019. 24(4): p. 1893 - 1901. DOI: http://dx.doi.org/10.1109/TMECH.2019.2928950
Qu, L., W. Qiao, and L. Qu, An Enhanced Linear Active Disturbance Rejection Rotor Position Sensorless Control for Permanent Magnet Synchronous Motors. IEEE Transactions on Power Electronics, 2020. 35(6): p. 6175-6184. DOI: http://dx.doi.org/10.1109/TPEL.2019.2953162
Volosencu, C., Reducing Energy Consumption and Increasing the Performances of AC Motor Drives Using Fuzzy PI Speed Controllers. Energies, 2021. 14(8): p. 2083. DOI: http://dx.doi.org/10.3390/en14082083
Kesavan, P., and A. Karthikeyan, Electromagnetic Torque-Based Model Reference Adaptive System Speed Estimator for Sensorless Surface Mount Permanent Magnet Synchronous Motor Drive. IEEE Transactions on Industrial Electronics, 2020. 67(7): p. 5936-5947. DOI: https://doi.org/10.1109/TIE.2020.2965499
Song, Z., J. Yang, X. Mei, T. Tao, and M. Xu, Deep reinforcement learning for permanent magnet synchronous motor speed control systems. Neural Computing and Applications, 2021. 33(5): p. 1-10. DOI: https://doi.org/10.1007/s00521-020-05352-1
Zhang, Z.F.,Y. Wu, and S.Y. Qi, Diagnosis method for open-circuit faults of six-phase permanent magnet synchronous motor drive system. IET Power Electronics, 2020. 13(15): p. 3305-3313. DOI: https://doi.org/10.1049/iet-pel.2019.1594
Hu, P., D. Wang, S. Jin, Y. Wei, C. Chen, N. Lin, Q. Zhang, X. Wu, H. Zhu, and F. Sun, The Modified Model of Third-Harmonic Shaping for a Surface-Mounted Permanent-Magnet Synchronous Motor Under Parallel Magnetization. IEEE Transactions on Industry Applications, 2020. 56(5): p. 4847-4856. DOI: https://doi.org/10.1109/TIA.2020.3008369
Parvathy, M.L., K. Eshwar, and V.K.. Thippiripati, A modified duty-modulated predictive current control for permanent magnet synchronous motor drive. IET Electric Power Applications, 2021. 15(1): p. 25-38. DOI: https://doi.org/10.1049/elp2.12004
Qin, X.F., and J.X. Shen, Split ratio optimisation of high-speed permanent magnet synchronous motor with multi-physics constraints. IET Electric Power Applications, 2020. 14(12): p. 2450-2461. DOI: https://doi.org/10.1049/iet-epa.2020.0308
Zhao, S., X. Huang, Y. Fang, and H. Zhang, DC-link-Fluctuation-Resistant Predictive Torque Control for Railway Traction Permanent Magnet Synchronous Motor in Six-Step Operation. IEEE Transactions on Power Electronics, 2020. PP(99): p. 10982 - 10993. DOI: https://doi.org/10.1109/TPEL.2020.2975497
El-Sousy, F., M.M. Amin, and O.A. Mohammed, Robust Optimal Control of High-Speed Permanent-Magnet Synchronous Motor Drives via Self-Constructing Fuzzy Wavelet Neural Network. IEEE Transactions on Industry Applications, 2020. PP(99): p. 999 - 1013. DOI: https://doi.org/10.1109/TIA.2020.3035131
Petkar, S.G., and T.V. Kumar, Computationally efficient model predictive control of three-level open-end winding permanent-magnet synchronous motor drive. IET Electric Power Applications, 2020. 14(7): p. 1210-1220. DOI: https://doi.org/10.1049/iet-epa.2019.0834
Lin, C.H. Linear permanent magnet synchronous motor drive system using AAENNB Control system with error compensation controller and CPSO. Electrical Engineering, 2020. 102(5): p. 1311-1325. DOI: https://doi.org/10.1007/s00202-020-00953-4
Published
How to Cite
Issue
Section
Copyright (c) 2022 X. Y. Xu, Y. Z. Li

This work is licensed under a Creative Commons Attribution 4.0 International License.