Numerical Simulation of Convection-Diffusion Phenomena by Four Inverse-Quadratic-RBF Domain-Meshfree Schemes

Authors

  • S Kaennakham
  • N Chuathong

DOI:

https://doi.org/10.21152/1750-9548.13.1.1

Abstract

The convection-diffusion type of PDEs is numerically solved by four numerical methods in this work. These four comparatively young numerical approaches are categorized as ‘domain-meshfree’ as they require no internal meshing but rely only on the collocation process amongst nodes via. the inverse-quadratic radial basis function (IQ-RBF). They are; the well-known Kansa Collocation Method (KCM), the Hermite Collocation Method (HCM), the Radial Point Interpolation Method (RPIM), and the Dual Reciprocity Boundary Element Method (DRBEM). The work aims to demonstrate the use of IQ-RBF as well as to compare the practical use of the methods. Moreover, engineering senses of criteria judging the quality of the methods are considered. It is found in this work that while KCM is the simplest to construct and deploys, it is highly sensitive to the number of nodes and the IQ-RBF shape parameter. The unsymmetric and populated matrix problem are alleviated when HCM or DRBEM are in use yet more CPU-time and storage seem to be the price to pay, particularly HCM.  However, it is actually RPIM that has appeared to be an optimal choice under all the criteria imposed.

References

Djidjeli K., Nair P. B., Chinchapatnam P. P. and Price W. G., Global and compact meshless schemes for the unsteady convection–diffusion equation, In International symposium on health care and biomedical research interaction, Oujda: University of Southampton, 2004, p. 1-8. https://doi.org/10.1016/j.cma.2005.05.015

Morton K. W., Numerical solution of convection–diffusion problems, Chapman and Hall, London, 1996.

Zienkiewicz O. C., Taylor R. L. and Nithiarasu P., The Finite Element Method for Fluid Dynamics, Butterworth-Heinemann, 2014.

Kaennakham S. and Moatamedi M., An automatic mesh adaptation algorithm and its performance for simulation of flow over a circular cylinder at Re = 1.4 × 10^5, Int. J. Comput. Sci. Eng., 2014, vol. 9, p. 257-273. https://doi.org/10.1504/ijcse.2014.060681

Kaennakham S., Holdø A. E., and Lambert C., A new simple h-mesh adaptation algorithm for standard Smagorinsky LES: a first step of Taylor scale as a refinement variable, Int. J. Multiphysics, 2010, vol. 4, p. 33-50. https://doi.org/10.1260/1750-9548.4.1.33

Liu G. R., Meshfree methods moving beyond the finite element method, CRC Press, Boca Raton, 2003.

Chuathong N., Kaennakham S. and Toutip W., An automatic centroid-node adaptive meshless (CNAM) method for solving convection-diffusion problems, J. Eng. Appl. Sci., 2017, vol. 12, p. 6554-6291.

Chuathong N. and Kaennakham S., A Numerical Investigation on Variable Shape Parameter Schemes in a Meshfree Method Applied to a Convection-Diffusion Problem, International Journal of Applied Engineering Research, 2017, vol. 12, p. 4162-4170. https://doi.org/10.1063/1.5055441

Kaennakham S. and Chuathong N., Solution to a Convection-Diffusion Problem Using a New Variable Inverse-Multiquadric Parameter in a Collocation Meshfree Scheme, International Journal of Multiphysics, 2017, vol. 11, p. 359-374. https://doi.org/10.21152/1750-9548.11.4.359

Chanthawara K., Kaennakham S. and Toutip W., The Numerical Study and Comparison of Radial Basis Functions in Applications of the Dual Reciprocity Boundary Element Method to Convection-Diffusion Problems, Progress in Applied Mathematics in Sciences and Engineering, AIP Conference Proceedings, 2016, vol. 020029, p. 1705. https://doi.org/10.1063/1.4940277

Kansa E. J., Multiquadrics–a scattered data approximation scheme with applications to computational fluid–dynamics–II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput Math Appl; 1990, vol. 19, p. 147–61. https://doi.org/10.1016/0898-1221(90)90271-k

Chandhini G. and Sanyasiraju Y. V. S. S., Local RBF-FD solutions for steady convection-diffusion problems, Int. J. Numer. Methods Eng., 2007, vol. 72, p. 352-378. https://doi.org/10.1002/nme.2024

Chinchapatnam P. P., Djidjeli K. and Nair P. B., Unsymmetric and symmetric meshless schemes for the unsteady convection–diffusion equation, Comput. Methods Appl. Mech. Eng., 2006, vol. 195, p. 2432-2453. https://doi.org/10.1016/j.cma.2005.05.015

Ferreira A. J. M., Roque C. M. C. and Martins P. A. L. S., Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates, Compos. Struct., 2004, vol. 66, p. 287-293. https://doi.org/10.1016/j.compstruct.2004.04.050

Liu Y., Liew K. M., Hon Y. C. and Zhang X., Hon Y.C. and Zhang, X., Numerical simulation and analysis of an electroactuated beam using a radial basis function, Smart Materials and Structures, 2005, vol. 14, p. 1163-1171. https://doi.org/10.1088/0964-1726/14/6/009

Cheng A. H .D., Golberg M. A., Kansa E. J. and Zammito G., Exponential convergence and H-c multiquadric collocation method for partial differential equations, Numer. Meth. Part. D. E., 2003, vol. 19, p. 571-594. https://doi.org/10.1002/num.10062

Li H. and Mulay S. S., Meshless Methods and Their Numerical Properties, CRC Press, Boca Raton, 2013.

Fasshauer G. E., Solving partial differential equations by collocation with radial basis functions, Proceedings of Chamonix, 1996, vol. 1997 ,p. 1-8.

Chen R. and Wu Z., Solving hyperbolic conservation laws using multiquadric quasi-interpolation, Numer. Meth. Part. D. E., 2006, vol. 22, p. 776-796. https://doi.org/10.1002/num.20115

Wang J. G. and Liu G. R., A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Eng., 2002, vol. 54, p. 1623-1648. https://doi.org/10.1002/nme.489

Liu X., Liu G. R., Tai K. and Lam K. Y., radial basis point interpolation collocation method for 2-d solid problem, In Advances in Meshfree and X-FEM Methods, World scientific, 2011, p. 35-40. https://doi.org/10.1142/9789812778611_0008

Bozkurt O. Y., Kanber B. and ASIk M. Z., Assessment of RPIM shape parameters for solution accuracy of 2D geometrically nonlinear problems, Int. J. Comput. Methods, 2013, vol. 10 (3), p. 1350003. https://doi.org/10.1142/s0219876213500035

Ghaffarzadeh H., Barghian M., Mansouri A. and Sadeghi M. H., Study of Meshfree Hermite Radial Point Interpolation Method for Flexural Wave Propagation Modeling and Damage Quantification. Lat. Am. J. Solid Struct., 2016, vol. 13, p. 2606-2627. https://doi.org/10.1590/1679-78252890

Ma J., Wei G., Liu D. and Liu G., The numerical analysis of piezoelectric ceramics based on the Hermite-type RPIM, Appl. Math. Comput., 2017, vol. 309, p. 170-182. DOI: https://doi.org/10.1016/j.amc.2017.03.045. https://doi.org/10.1016/j.amc.2017.03.045

Toutip W., The dual reciprocity boundary element method for linear and nonlinear, in Department of Mathematics. University of Hertfordshire: United Kingdom, 2001.

Nardini D. and Brebbia C. A., A new approach to free vibration analysis using boundary elements, Appl. Math. Modell., 1983, vol. 7, p. 157-162. https://doi.org/10.1016/0307-904x(83)90003-3

Liu H. W., Numerical modeling of the propagation of ocean waves, University of Wollongong, 2001.

Bruntona I. L. and Pullan A. J., A semi-analytic boundary element method for parabolic problem, Eng. Anal. Boundary Elem., 1996, vol. 18, p. 253-264. https://doi.org/10.1016/s0955-7997(96)00064-1

Zhu S.-P., Liu H.–W. and Lu X.–P., A combination of LTDRM and ATPS in solving diffusion problems, Eng. Anal. Boundary Elem., 1998, vol. 21, p. 285-289. https://doi.org/10.1016/s0955-7997(98)00009-5

Chuathong N. and Toutip W., An accuracy comparison of solutions between Boundary element method and meshless method for Laplace equation, In Proceedings of the 16th Annual Meeting in Mathematics (AMM2011), Khon Kaen University, Khon Kaen, 2011, p. 29-42. https://doi.org/10.20319/pijss.2018.41.105110

Li J., Chen Y. and Pepper D., Radial basis function method for 1-D and 2-D groundwater contaminant transport modeling, Computational Mechanics, 2003, vol. 32, p. 10-15. https://doi.org/10.1007/s00466-003-0447-y

Hon Y. C. and Schaback R., On unsymmetric collocation by radial basis functions, Applied Mathematics and Computation, 2001, vol. 119, p. 177-186. https://doi.org/10.1016/s0096-3003(99)00255-6

Islam S., Šarler B., Vertnik R. and Kosec G., Radial basis function collocation method for the numerical solution of the two–dimensional transient nonlinear coupled Burgers’ equations, Appl Math Model; 2012, vol. 36 (3), p. 1148–60. https://doi.org/10.1016/j.apm.2011.07.050

Leitao V. M. A., RBF-based meshless methods for 2D elastostatic problems, Engineering Analysis with Boundary Elements, 2004, vol. 28, p. 1271-1281. https://doi.org/10.1016/j.enganabound.2003.06.003

Rocca A. L., Power H., Rocca V. L. and Morale M., A meshless approach based upon radial basis function Hermite collocation method for predicting the cooling and the freezing times of foods, CMC Computers Materials and Continua, 2005, vol. 2, p. 239-250.

Rosales A. H., Rocca A. L. and Power H., Radial basis function Hermite collocation approach for the numerical simulation of the effect of precipitation inhibitor on the crystallization process of an over-saturated solution, Numerical Methods for Partial Differential Equations, 2006, vol. 22, p. 361-380. https://doi.org/10.1002/num.20096

Naffaa M. and Gahtani H. J. A., RBF-based meshless method for large deflection of thin plates, Engineering Analysis with Boundary Elements, 2007, vol. 31, p. 311-317. https://doi.org/10.1016/j.enganabound.2006.10.002

Franke R., Scattered data interpolation: tests of some methods, Math Comput, 1982, vol. 38, p. 181–200.

Published

2019-03-31

How to Cite

Kaennakham, S. ., & Chuathong, N. (2019). Numerical Simulation of Convection-Diffusion Phenomena by Four Inverse-Quadratic-RBF Domain-Meshfree Schemes. The International Journal of Multiphysics, 13(1), 1-30. https://doi.org/10.21152/1750-9548.13.1.1

Issue

Section

Articles