Gaussian algorithm for retrieving and projecting aerosols optical depth: A case study of Monrovia-Liberia

Authors

  • M Emetere

DOI:

https://doi.org/10.21152/1750-9548.12.3.239

Abstract

The large loss of satellite datasets over most parts of West Africa is very dangerous for the purpose of nowcast and forecast. The cause was traced to salient inabilities for satellite sensors to separate aerosols radiances from the surface of the earth to the top of the atmosphere. Fourteen years (2000-2013) Multi-angle Imaging SpectroRadiometer (MISR) was obtained. The volume of data loss in fourteen years was given as 69.9%. Guassian algorithm technique (GAT) was used in this study to retrieve the missing data for fourteen years. The success of the operation extended the research exploration to forecasting twenty years aerosols optical depth. GAT was proven to be very consistent via statistical analysis, cotour mapping, surface mesh mapping, relief mapping and vector mapping. A very high aerosol loading is expected to commence at the begining of 2023 and may last till 2028. It was also shown that aerosol optical depth may be stable between 2029-2033. Two hypothesis were propounded for further work. The results show that aerosol loading over the region is high and may be a major source of environmental hazard in the nearest future. 

References

Adebiyi, A.A., Paquita, Z. and Steven, J.A., (2015): The convolution of dynamics and moisture with the presence of shortwave absorbing aerosols over the southeast Atlantic. Journal of Climate, 28: 1997–2024. https://doi.org/10.1175/jcli-d-14-00352.1

Bilal, M., Nichol, J. E., and Chan, P. W. (2014): Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms, Remote Sens. Environ., 153, 50–60. https://doi.org/10.1016/j.rse.2014.07.015

Boucher, O. and Quaas, J., (2013): Water vapour affects both rain and aerosol optical depth, Nature Geosciences, 6: 4–5. https://doi.org/10.1038/ngeo1692

Dani, K.K., Maheskumar, R.S., and Devara, P.C.S., (2003): Study of total column atmospheric aerosol optical depth, ozone and precipitable water content over Bay of Bengal during BOBMEX-99. Journal of Earth System Science, 112 (2): 205-221. https://doi.org/10.1007/bf02701987

de Almeida Castanho, A. D., Prinn, R., Martins, V., Herold, M., Ichoku, C., and Molina, L. T. (2007): Analysis of Visible/SWIR surface reflectance ratios for aerosol retrievals from satellite in Mexico City urban area, Atmos. Chem. Phys., 7, 5467–5477. https://doi.org/10.5194/acp-7-5467-2007

Emetere Moses E., Akinyemi M.L. & Oladimeji T.E. (2016a): Statistical Examination Of The Aerosols Loading Over Kano-Nigeria: The Satellite Observation Analysis, Scientific Review Engineering and Environmental Sciences, 72: 167-176.

Emetere, Moses Eterigho, (2016): Statistical Examination Of The Aerosols Loading Over Mubi-Nigeria: The Satellite Observation Analysis, Geographica Panonica, 20(1), 42-50. https://doi.org/10.5937/geopan1602062e

Emetere Moses E., Akinyemi M.L. & Akinwumi S.A. (2016b): Aerosols Loading Trends And Its Environmental Threats Over Cotonou-Benin, Nature Environment and Pollution Technology, 15 (3), 1111-1116

Emetere M.E., Akinyemi M.L., & Akinojo O., (2016): Effects Of Band Superposition On The Satellite Imagery Of Aerosol Optical Depth Over West Africa, Journal of Engineering and Applied Sciences 11(1), 17-22

Emetere M.E., Akinyemi M.L., & Akinojo O., (2015a): Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station, Environmental Pollution, 207 (C), 381-390. https://doi.org/10.1016/j.envpol.2015.09.047

Emetere M.E., Akinyemi M.L., & Akinojo O., (2015b): A Novel Technique for Estimating Aerosol Optical Thickness Trends Using Meteorological Parameters, 2015 PIAMSEE: AIP Conference Proceedings 1705, 020037 (2016). https://doi.org/10.1063/1.4940285

Knapp, K. R., Frouin, R., Kondragunta, S., and Prados, A. (2005): Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance, Int. J. Remote Sens., 26, 4097–4116. https://doi.org/10.1080/01431160500099329

MODIS, (2017): https://modis-atmos.gsfc.nasa.gov/MOD04_L2/format.html (Accessed 30th March, 2017).

Poschl, U. (2005): Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects, Angew. Chem. Int. Edit., 44, 7520–7540. https://doi.org/10.1002/anie.200501122

Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J. (2007): Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res., 112, D13211. https://doi.org/10.1029/2006jd007811

Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., and Korkin, S. (2011): Multiangle implementation of atmospheric correction (MAIAC): Radiative transfer basis and look-up tables, J. Geophys. Res., 116, D03210. https://doi.org/10.1029/2010jd014985

Vijayakumar, K. and Devara, P.C.S., (2013): Study of aerosol optical depth, ozone, and precipitable water vapour content over Sinhagad, a high-altitude station in the Western Ghats. International Journal of Remote Sensing, 34 (2): 613-630. https://doi.org/10.1080/01431161.2012.705444

Yang, Y., Liao, H. and Lou, S.-J., (2014): Simulated impacts of sulphate and nitrate aerosol formation on surface-layer ozone concentrations in China. Atmospheric and Oceanic Science Letters, 7(5): 441-446. https://doi.org/10.1080/16742834.2014.11447204

Published

2018-09-30

How to Cite

Emetere, M. (2018). Gaussian algorithm for retrieving and projecting aerosols optical depth: A case study of Monrovia-Liberia. The International Journal of Multiphysics, 12(3), 239-256. https://doi.org/10.21152/1750-9548.12.3.239

Issue

Section

Articles