Multiphysics Modelling of the Mandel- Cryer Effect
DOI:
https://doi.org/10.21152/1750-9548.10.1.11Abstract
In porous medium studies the Mandel-Cryer effect is known, describing non-monotonic pore-water pressure evolution in response to loading or to changed stress conditions. In a 2D poro-elastic model we couple the pore water hydraulics with mechanics (HM). The Mandel-Cryer effect is identified in parts of the model region that are far from the drainage boundary. At parts of the loaded boundary an even more complex pressure evolution is revealed. Variations of the Biot-parameter as the coupling parameter clearly indicate the relevance of the two-way coupling between the involved physical regimes. Hence the Mandel-Cryer effect is a typical result of multi-physical coupling.
References
Mandel, J., Consolidation of soils (mathematical study). Geotechnique, 1953. 3: p. 287–299.
Skempton, A. W., The pore pressure coefficients A and B. Geotechnique, 1954. 4: p. 143-147.
Terzaghi, K., Theoretical Oil Mechanics 1943: Wiley & Sons, New York.
Cryer, C. W., A comparison of the three- dimensional consolidation theories of Biot and Terzaghi. Q. J. Mech. Appl. Math., 1963. 16: p 401-412. https://doi.org/10.1093/qjmam/16.4.401
Gibson, R.E., Knight, K., Taylor, P.W., A critical experiment to examine theories of three-dimensional consolidation. European Conference on Soil Mechanics and Foundations, Wiesbaden (Germany) 1963. Proceedings 1: p 69–76.
Verruijt, A., Discussion, 6th Int. Conf. Soil Mechanics and Foundation Engineering, Montreal (Canada) 1965. Proceedings 3: p 401-402.
Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., Roegiers, J.-C., Mandel’s problem revisited. Geotechnique 1996. 46: p 187–195. https://doi.org/10.1680/geot.1996.46.2.187
Cui, L., Cheng, A. H.-D., Kaliakin, V. N., Abousleiman, Y., Roegiers, J.-C., Finite element analyses of anisotropic poroelasticity: a generalized Mandel’s problem and an inclined borehole problem. Int. J. Num. & Anal. Meth. in Geomechanics 1996. 20: p 341-401. https://doi.org/10.1002/(sici)1096-9853(199606)20:6<381::aid-nag826>3.0.co;2-y
Zhang, X., Briaud, J., Mandel-Cryer effect in unsaturated soils. 4th Conf. Unsaturated Soils, Arizona (USA) 2006. Proceedings: p 2063-2074. https://doi.org/10.1061/40802(189)174
Selvadurai, A. P. S., Shirazi, A., Mandel-Cryer effects in fluid inclusions in damage susceptible poro-elastic media. Comput. Geotech. 2004. 37: p 285–300. https://doi.org/10.1016/j.compgeo.2004.02.008
Yin, S., Rothenburg, L., Dusseault, M.B., 3D coupled displacement discontinuity and finite element analysis of reservoir behavior during production in semi-infinite domain. Transport in Porous Media 2006. 65: p 425–441. https://doi.org/10.1007/s11242-006-0003-2
Yin, S., Geomechanics-Reservoir Modeling by Displacement Discontinuity-Finite Element Method. Doctorate thesis, Waterloo (Canada) 2008.
Oliaei, M.N., Pak, A., Element free Galerkin mesh-less methods for fully coupled analysis of a consolidation process. Transaction A: Civil Eng. 2009. 16(1): p 65-77.
Winterfeld, P.H., Wu, Y-S., Pruess, K., Oldenburg, C., Development of an advanced thermal-hydrological-mechanical model for CO2 storage in porous and fractured saline aquifers. TOUGH Symposium, Berkeley (USA) 2012.
Jha, B., Juanes, R., Coupled multiphase flow and poromechanics: a computational model of pore-pressure effects on fault slip and earthquake triggering. Water Resources Research 2014. 50(5): p 3776–3808. https://doi.org/10.1002/2013wr015175
Kim, J., Tchelepi, H.A., Juanes, R., Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics. SPE Journal 2011. Paper 119084. https://doi.org/10.2118/119084-ms
Phillips, P.J.,·Wheeler, M.F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput Geosci. 2007. 11: p 131–144. https://doi.org/10.1007/s10596-007-9045-y
Wong, T.T., Delwyn, T., Fredlund, G., Krahn, J., A numerical study of coupled consolidation in unsaturated soils. Can. Geotech. J. 1998. 35: p 926–937. https://doi.org/10.1139/t98-065
Silbernagel, M.M., Modeling Uncoupled Fluid Flow and Geomechanical and Geophysical Phenomena within a Finite Element Framework. Master Thesis, Golden, Colorado (USA) 2007.
Selvadurai, A. P. S., Suvorov, A. P., Boundary heating of poro-elastic and poro-elasto-plastic spheres. Proc. R. Soc. A: p 20121-28. https://doi.org/10.1098/rspa.2012.0035
COMSOL Multiphysics, 2015. www.comsol.com
Jha, B., A Mixed Finite Element Framework for Modelling Coupled Fluid Flow and Reservoir Geomechanics, Master Thesis, Stanford (USA) 2005.
Verruijt, A., Computational Geomechanics 1995: Kluwer Acad. Publ., Dordrecht (The Netherlands).
Coussy, O., Mechanics of Porous Continua 1995: Wiley & Sons, Chichester (England).
Published
How to Cite
Issue
Section
Copyright (c) 2016 E Holzbecher

This work is licensed under a Creative Commons Attribution 4.0 International License.