On dimensionless loading parameters for close-in blasts

Authors

  • K Micallef
  • A Fallah
  • D Pope
  • M Moatamedi
  • L Louca

DOI:

https://doi.org/10.1260/1750-9548.9.2.171

Abstract

Close-range blasts pose a threat through severe damage to structures and injury or death. In this work, the spatial and temporal descriptions of a localised blast load are presented using 6 non-dimensional parameters. These are found to be solely functions of the charge stand-off distance to diameter ratio for a cylindrically-shaped charge.

Numerical simulations of a localised blast are performed using AUTODYN, where the pressure variation on a rigid barrier for various charge stand-off/diameter combinations is obtained. The least-square regression is then utilised to obtain the relationship between stand-off/diameter ratio and dimensionless loading parameters. The relevant expressions and dimensionless charts are presented.

The proposed equations are verified by comparing experimental data with numerical results obtained by finite element analysis (FEA) of blast loaded steel plates (using the user-defined subroutine VDLOAD implemented in the FEA package ABAQUS/Explicit). Excellent correlation of the measured permanent displacement with numerically predicted results is obtained.

References

Baker, W. E., Kulesz, J. J., Richer, R. E., Bessey, R. L. and Westine, P. S., Parr, V. B., Workbook for predicting pressure wave and fragment effect of exploding propellent tanks and gas storage vessels, 1975, NASA.

Baker, W. E., Westine, P. S., Kulesz, J. J., Wilbeck, J. S. and Cox, P. A., A manual for the prediction of blast and fragment loadings on structures, 1980: Amarillo, Texas. https://doi.org/10.21236/ada396118

Ginsburg, S. and U. Kirsch, Design of protective structures against blast. Journal of Structural Engineering, 1983. 109(6): p. 1490–1506. https://doi.org/10.1061/(asce)0733-9445(1983)109:6(1490)

Boh, J. W., L. A. Louca and Y. S. Choo, Energy absorbing passive impact barrier for profiled blastwalls. International Journal of Impact Engineering, 2005. 31(8): p. 976–995. https://doi.org/10.1016/j.ijimpeng.2004.06.005

Louca, L. A. and R. M. Mohamed Ali, Improving the ductile behaviour of offshore topside structures under extreme loads. Engineering Structures, 2008. 30(2): p. 506–521. https://doi.org/10.1016/j.engstruct.2007.04.020

Rajendran, R. and J. M. Lee, Blast loaded plates. Marine Structures, 2009. 22(2): p. 99–127. https://doi.org/10.1016/j.marstruc.2008.04.001

Gharababaei, H. and A. Darvizeh, Experimental and analytical investigation of large deformation of thin circular plates subjected to localised and uniform impulsive loading. Mechanics Based Design of Structures and Machines, 2010. 38(2): p. 171–189. https://doi.org/10.1080/15397730903554633

Jacob, N., G. N. Nurick and G. S. Langdon, The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads. Engineering Structures, 2007. 29(10): p. 2723–2736. https://doi.org/10.1016/j.engstruct.2007.01.021

Florence, A. L., Clamped circular rigid-plastic plates under central blast loading. International Journal of Solids and Structures, 1966. 2(2): p. 319–335. https://doi.org/10.1016/0020-7683(66)90022-9

Florence, A. L., Response of circular plates to central pulse loading. International Journal of Solids and Structures, 1977. 13(11): p. 1091–1102. https://doi.org/10.1016/0020-7683(77)90079-8

Conroy, M. F., Rigid-plastic analysis of a simply supported circular plate due to dynamic circular loading. Journal of the Franklin Institute, 1969. 288(2): p. 131–135. https://doi.org/10.1016/0016-0032(69)90174-4

Lee, Y. -W. and T. Wierzbicki, Fracture prediction of thin plates under localised impulsive loading. Part I: dishing. International Journal of Impact Engineering, 2005. 31(10): p. 1253–1276. https://doi.org/10.1016/j.ijimpeng.2004.07.010

Lee, Y. -W. and T. Wierzbicki, Fracture prediction of thin plates under localised impulsive loading. Part II: discing and petalling. International Journal of Impact Engineering, 2005. 31(10): p. 1277–1308. https://doi.org/10.1016/j.ijimpeng.2004.07.011

Qin, Q. H., T. J. Wang and S. Z. Zhao, Large deflections of metallic sandwich and monolithic beams under locally impulsive loading. International Journal of Mechanical Sciences, 2009. 51(11–12): p. 752–773. https://doi.org/10.1016/j.ijmecsci.2009.08.008

Langdon, G. S., S. C. K. Yuen and G. N. Nurick, Experimental and numerical studies on the response of quadrangular stiffened plates. Part II: localised blast loading. International Journal of Impact Engineering, 2005. 31(1): p. 85–111. https://doi.org/10.1016/j.ijimpeng.2003.09.050

Jacob, N., et al., Scaling aspects of quadrangular plates subjected to localised blast loads - experiments and predictions. International Journal of Impact Engineering, 2004. 30(8-9): p. 1179–1208. https://doi.org/10.1016/j.ijimpeng.2004.03.012

Wierzbicki, T. and G. N. Nurick, Large deformation of thin plates under localised impulsive loading. International Journal of Impact Engineering, 1996. 18(7–8): p. 899–918. https://doi.org/10.1016/s0734-743x(96)00027-9

Bonorchis, D. and G. N. Nurick, The influence of boundary conditions on the loading of rectangular plates subjected to localised blast loading - Importance in numerical simulations. International Journal of Impact Engineering, 2009. 36(1): p. 40–52. https://doi.org/10.1016/j.ijimpeng.2008.03.003

Langdon, G. S., et al., Behaviour of fibre-metal laminates subjected to localised blast loading – Part I: Experimental observations. International Journal of Impact Engineering, 2007. 34(7): p. 1202–1222. https://doi.org/10.1016/j.ijimpeng.2006.05.008

Lemanski, S. L., et al., Behaviour of fibre metal laminates subjected to localised blast loading - Part II: Quantitative analysis. International Journal of Impact Engineering, 2007. 34(7): p. 1223–1245. https://doi.org/10.1016/j.ijimpeng.2006.05.009

Karagiozova, D., et al., Simulation of the response of fibre-metal laminates to localised blast loading. International Journal of Impact Engineering, 2010. 37(6): p. 766–782. https://doi.org/10.1016/j.ijimpeng.2009.04.001

Langdon, G. S., et al., Failure characterisation of blast-loaded fibre-metal laminate panels based on aluminium and glass-fibre reinforced polypropylene. Composites Science and Technology, 2007. 67(7–8): p. 1385–1405. https://doi.org/10.1016/j.compscitech.2006.09.010

Lemanski, S. L., et al., Understanding the behaviour of fibre metal laminates subjected to localised blast loading. Composite Structures, 2006. 76(1–2): p. 82–87. https://doi.org/10.1016/j.compstruct.2006.06.012

Langdon, G. S., W. J. Cantwell and G. N. Nurick, Localised blast loading of fibre-metal laminates with a polyamide matrix. Composites Part B: Engineering, 2007. 38(7–8): p. 902–913. https://doi.org/10.1016/j.compositesb.2006.11.005

Langdon, G. S., et al., Response of GLARE panels to blast loading. Engineering Structures, 2009. 31(12): p. 3116–3120. https://doi.org/10.1016/j.engstruct.2009.07.010

Johnson, W., Impact strength of materials. 1972, London: Edward Arnold (Publishers) Limited.

Zhao, Y. -P., Suggestion of a new dimensionless number for dynamic plastic response of beams and plates. Archive of Applied Mechanics (Ingenieur Archiv), 1998. 68(7–8): p. 524–538. https://doi.org/10.1007/s004190050184

Li, Q. M. and N. Jones, On dimensionless numbers for dynamic plastic response of structural members. Archive of Applied Mechanics (Ingenieur Archiv), 2000. 70: p. 245–254. https://doi.org/10.1007/s004199900072

Li, Q. M. and H. Meng, Pulse loading shape effects on pressure-impulse diagram of an elastic-plastic, single-degree-of-freedom structural model. International Journal of Mechanical Sciences, 2002. 44(9): p. 1985–1998. https://doi.org/10.1016/s0020-7403(02)00046-2

Fallah, A. S. and L. A. Louca, Pressure-impulse diagrams for elastic-plastic-hardening and softening single-degree-of-freedom models subjected to blast loading. International Journal of Impact Engineering, 2007. 34(4): p. 823–842. https://doi.org/10.1016/j.ijimpeng.2006.01.007

Langdon, G. S., et al., The air-blast response of sandwich panels with composite face sheets and polymer foam cores: Experiments and predictions. International Journal of Impact Engineering, 2013. 54: p. 64–82. https://doi.org/10.1016/j.ijimpeng.2012.10.015

Buckingham, E., On physically similar systems; Illustrations of the use of dimensional equations. Physical Review, 1914. 4(4): p. 345. https://doi.org/10.1103/physrev.4.345

Hopkinson, B., British Ordnance Board Minutes, 1915, British Ordnance Board.

Cranz, C., Lehrbuch der Ballistic. 1926, Berlin: Springer.

ANSYS AUTODYN, 2010.

MATLAB R2010b, 2010, The MathWorks.

Langdon, G. S., et al., The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: Preliminary experiments. Engineering Structures, 2012. 36(0): p. 104–112. https://doi.org/10.1016/j.engstruct.2011.11.023

SSAB. Armox 370T Class 1 Protection Plate. 2012 08/11/12]; Available from: http://www.ssab.com/Global/ARMOX/Datasheets/en/371_ARMOX_370T_Class1_UK_Data%20Sheet.pdf.

Nurick, G. N. and J. B. Martin, Deformation of thin plates subjected to impulsive loading–A review: Part II: Experimental studies. International Journal of Impact Engineering, 1989. 8(2): p. 171–186. https://doi.org/10.1016/0734-743x(89)90015-8

Nurick, G. N. and G. C. Shave, The deformation and tearing of thin square plates subjected to impulsive loads – An experimental study. International Journal of Impact Engineering, 1996. 18(1): p. 99–116. https://doi.org/10.1016/0734-743x(95)00018-2

Chung Kim Yuen, S., et al., Response of V-shape plates to localised blast load: Experiments and numerical simulation. International Journal of Impact Engineering, 2012. 46: p. 97–109. https://doi.org/10.1016/j.ijimpeng.2012.02.007

ABAQUS/CAE, 2009, Dassault Systemes.

Micallef, K., et al. The dynamic performance of simply-supported rigid-plastic circular steel plates subjected to localised blast loading. International Journal of Mechanical Sciences 65.1 (2012): 177–191. https://doi.org/10.1016/j.ijmecsci.2012.10.001

Fallah, A. S., et al. Dynamic response of Dyneema® HB26 plates to localised blast loading. International Journal of Impact Engineering 73 (2014): 91–100. https://doi.org/10.1016/j.ijimpeng.2014.06.014

Micallef, K., et al. Dynamic Performance of Simply Supported Rigid Plastic Circular Thick Steel Plates Subjected to Localized Blast Loading. Journal of Engineering Mechanics 140.1 (2013): 159–171. https://doi.org/10.1061/(asce)em.1943-7889.0000645

Micallef, K., et al. On the dynamic plastic response of steel membranes subjected to localised blast loading. In International Journal of Impact Engineering. https://doi.org/10.1016/j.ijimpeng.2015.11.002

Published

2015-06-30

How to Cite

Micallef, K., Fallah, A., Pope, D., Moatamedi, M., & Louca, L. (2015). On dimensionless loading parameters for close-in blasts. The International Journal of Multiphysics, 9(2), 171-194. https://doi.org/10.1260/1750-9548.9.2.171

Issue

Section

Articles