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Abstract  

Time-dependent convection-diffusion problems, prevalent in science and engineering, 

present significant analytical challenges. The limitations of traditional mesh-based 

numerical methods necessitate alternative approaches. Meshless methods emerge as a 

pivotal solution, offering precision where conventional techniques falter. This research 

centers on applying meshless methods to such problems, emphasizing their critical role in 

accurately modelling complex phenomena across various applications. Methodologically, 

the research compares two specific meshless methods: the Direct method and the Indirect 

method. Both methods are implemented using the multiquadric radial basis function within 

a global collocation framework. The Direct method is derivative-based, while Indirect 

adopts an integration-based approach. The comparison is conducted over four different 

test cases, which are designed to assess the sensitivity of Direct and Indirect to the 

multiquadric shape parameter and node density, their effectiveness under varying 

convection forces, and their computational efficiency.The findings of the study are twofold. 

Firstly, the Direct method exhibits superior accuracy overall, particularly in scenarios with 

intense convection and in capturing boundary layers characterized by steep flow variable 

gradients. Secondly, the Indirect method demonstrates notable computational efficiency, 

requiring approximately half the computational time needed by the Direct method. 

However, this efficiency comes with a trade-off in accuracy, particularly under conditions 

of high convection. The research concludes that the choice between the Direct and Indirect 

methods should be based on the specific demands of the problem, considering factors 

such as the desired level of accuracy, available computational resources, and the 

complexity of the scenario. This study offers valuable insights for professionals in fields 

like environmental science and pollution control, aiding in the selection of the most suitable 

meshless method for effectively tackling convection-diffusion challenges. 

 

1. INTRODUCTION 

Real-world problems have often time become possible for human to tackle when they are modelled or represented 

by Partial Differential Equations (PDEs). With this, PDEs play crucial roles in many areas of applications in 

science, engineering, physics, chemistry, ecology, biology, and many more [1-5]. There are different types of 

PDEs; linear or nonlinear; homogeneous or nonhomogeneous; elliptic, hyperbolic, or parabolic, each of which 

holds different mathematical characteristics and represents different physical phenomenon. Convection-diffusion 

equations are specific forms of PDEs and have been attracting an increasing amount of attention [6-9]. They are 

found to play a significant role in various fields of science, engineering, and ecosystem including (as models for) 



International Journal of Multiphysics 

Volume 18, No. 2s, 2024 

ISSN: 1750-9548 

 

24 https://doi.org/10.52710/ijm.v18.i2s.947 

air pollution [10], adsorption of pollutants in soil, food processing [11], fluid flows, climate studies, astrophysics 

[12], groundwater prediction and environmental protection [13] (refer to the references cited therein), energy [14], 

financial-related issues [15], and various branches of mathematics related to pattern formation [12]. As long as 

the ecosystem is concerned, in particular, by understanding the movement and distribution of substances within 

ecosystems, we can make informed decisions to promote sustainable development, protect biodiversity, and 

ensure the long-term health and resilience of ecosystems. Investing in accurate prediction of convection-diffusion 

phenomena is crucial for achieving environmental sustainability and preserving the intricate web of life on our 

planet. With this huge impact in these many areas, finding solutions for them has inevitably become necessary. 

Like other kinds of PDEs, there are two main types of solution: analytical and numerical. While it is well-known 

that analytical solutions are extremely difficult to achieve (or even not at all possible, particularly for complex 

problems), in this work, the main focus is on the numerical side of solution finding strategies.  

Over decades, the conventional and standard numerical methods for solving the convection-diffusion equation are 

finite different method (FDM) [16-18], finite element method (FEM) [19] [20], and finite volume method (FVM) 

[21, 22]. The most challenging issue under this kind of phenomena is the oscillatory occurring. For this crucial 

task, the forementioned conventional schemes are often supported with some special numerical treatments such 

as the stabilized methods [10, 23], the up-winding schemes and adding a consistent diffusion term in streamline 

direction known as the streamline upwind Petrov–Galerkin method [24], the local projection stabilization method 

[25], the stencil finite-different method [26]. Another promising extra treatment may be to get help from additional 

grids/mesh known as ‘grid/mesh refinement’ where denser grids are expected to take place at locations with high 

gradient of problem variables such as boundary layers. This, however, comes with a high price to pay in terms of 

CPU time and space as refining grids/mesh is a highly complex process. A nicely documented work recently done 

along this path is [27] (see also references therein).    

To avoid complexities arising with grid/mesh-based methods, numerical schemes constructed with aims to be 

independent of grid/mesh as much as possible have been receiving a great amount of attention during the past 

decades. Numerical studies under this concept include the use of the boundary element method [28-31], and those 

known as ‘meshfree/meshless’ methods.  Meshless methods have been widely applied to the solution of PDEs 

[32, 33]. Compared with the traditional numerical methods, meshless methods do not need grid/mesh generation 

and they have been proven to be capable of tackling complex problems in high dimensions. Generally, this family 

of methods can be grouped into two classes; (i) strong forms including radial basis function collocation methods 

[34], the finite point method [35], the hp-meshless cloud method [36], etc., (ii) weak forms including the element 

free Galerkin method [37], the diffuse element method [38], and the point interpolation method [39], etc., and see 

references therein. Those based on radial basis functions (RBFs) are what the main attention of this work is paid 

to.  

The radial basis function of multiquadric type was firstly numerically explored in a global manner for the context 

of interpolation and, later for solving PDEs by Kansa in 1990 [40]. Ever since, a vast number of applications have 

been growing in many branches of science and engineering [41, 42]. Some recent works (only over the past 

decade) include the examination of evaluation algorithm [43],   the solution to seepage problems using a new 

algorithm for the shape parameter optimization [44], the determination of the optimal shape parameter in the 

multiquadric function [45], the solution to time-fractional higher order partial differential equations with constant 

and variable coefficients [46], and the computational study on constant and sinusoidal heating of skin tissue [47]. 

With regards to solving convection-diffusion type of PDEs, recent numerical works based on RBFs include the H 

-adaptive RBF-FD method for the high-dimensional equations [48], the RBF-FD method based on Shishkin nodes 

[49], the comparative investigation on RBF shape parameters [50], the attempt to improve the results quality by 

the means of automatic node-adaptation [51-53], and the comparative study of four internal-node-free schemes 

[54].  

In this work, it focuses on an application of RBF when being used as a component of a differential quadrature 

(DQ) numerical scheme. The idea to replace the polynomial term appearing in the original DQ, proposed in 1972 

by Bellman [55], was firstly done by Wu and Shu in 2002 [56] where the main focus was paid on the 

approximation of the derivative terms (referred hereafter in this work as ‘Direct (DR)’ method). Recent successful 
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studies of the method are the application for elliptic problems in axisymmetric domain [57], for time-dependent 

analysis of unsaturated seepage [58], and for solving non-linear differential equations of Lane-Emden type [59] 

(see also the references therein). Alternatively, for the sake of comparison, the attempt to make use of the 

integration of RBF firstly proposed by Mai Duy in 2005 [60] is also under investigation in this work (referred 

hereafter in this work as ‘Indirect (iDR)’ method). This method was later investigated in more comprehensive 

detail by Sarra in 2006 [61] where the most recent researches include the applications for the second-order 

differential problems [62], the natural convection in concentric annuli [63], and the numerical simulation of 

shallow water waves based on generalized equal width (GEW) equation [64], to name only a few.  

Section 2 of the paper provides the mathematical idea and structure of both DR and iDR methods before their 

implementation to the time-dependent convection-diffusion is described in Section 3. Section 4 gives the 

numerical algorithm where four numerical examples are demonstrated in Section 5 and the main conclusions are 

drawn in Section 6. 

2. MATHEMATICAL BLACKGROUND 

2.1. The RBF- differential quadrature (direct, DR) method 

The original radial basis function-differential quadrature (RBF-DQ) method states that a weighted linear sum of 

the functional values at neighboring nodes can approximate the derivatives of a smooth function. Since only two-

dimensional problems are considered, it is defined that ( , )i i ix y=p  denotes the ith node. The implies that at 

the ith node ip , the RBF-DQ approximation for the n-th order derivative of ( )u p  with respect to,  ,x y =  

, can be stated as
( )n

u  

( ) ( ) ( ) ( ),

1

N
n n

i ij j

j

u w u



=

=p p , (1) 

where 
( ),n

ijw


 are the DQ weighting coefficients, and N  is the total number of nodes used in the supporting 

region. For a global scheme, like studied in this work, this N  implies the number of nodes in the entire 

computational domain. 

It is assumed that there are N  nodes, 1 2, ,..., Np p p , in the support domain of point p  in the standard RBF-DQ 

technique procedure. Then, the RBFs' approximation of u can be expressed as 

( ) ( )
1

N

k k

k

u  
=

=p p , (2) 

where k  is the coefficient for a selected radial basis function, ( )k p . In this work, a popular choice of RBFs 

known as ‘multiquadric (MQ)’ is under investigation and its formula is expressed as follows   

( ) 2 2

k kr c = +p , (3) 

where the positive constant c  is known as the shape parameter and it is this parameter that is known to play a 

crucial role in solution quality determination, and kr  is the distance between point p  and kp , generally taken to 

be the Euclidean format, i.e., 

k kr = −p p . (4) 

Equation (2) can be used to build an N-dimensional linear vector space NV  because it has N freedoms. In Equation 

(2), ( ) , 1, 2,...,k k N =p  is a set of basis functions in NV  that can be regarded as the basis vectors. The 
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weighting coefficients 
( ),n

ijw


 can, therefore, be calculated in the same manner as the conventional DQ technique. 

Equation (1) yields the following when all basis functions are substituted: 

( ) ( )
( )

( ) ( ),

1

n N
nk i

ij k jn
j

w



 =


=




p
p . (5) 

It can be expressed in a clearer format as follows  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
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( ) ( ) ( )
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
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p
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p p p
p

p p p

p p p
p
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(6) 

It is to be noted that since we apply direct differentiations to   on the left-hand side of Equation (6), this 

procedure, is referred to hereafter as the "Direct method (DR)". The matrix  A  is invertible if the appropriate   

is selected, in accordance with the theory of RBF approximation. Consequently, the following equation can be 

used to find the vector 
( ),n

iw


, 

( )  
( ) ( )

( )

1,
, 1,2,...,

n

n i

i n
w A i N

 



− 
= =



p
. (7) 

This resulting vector from Equation (7) is not to be input into Equation (1) and the following can be achieved for 

the derivative of u , 

( ) ( ) ( ) ( ),

1

N
n n

i ij j

j

u w u



=

=p p . (8) 

2.2. The integrated RBF- differential quadrature (indirect, iDR) method 

In contrast with the direct method described above, in the integrated RBF-DQ (iRBF-DQ) start with the 

approximation of the highest order of derivative occurring in the governing equation. This means that for a second-

order derivative ( )u p , its approximation can be defined under this concept as  

( ) ( ) ( )2

1

N

x k k

k

u  
=

=p p . (9) 

From this point, an integration procedure, with respect to x can be performed. 
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The same procedure is again repeated to yield the following  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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
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p
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 (11) 

where ( ) ( )k kH dx= p p , ( ) ( )k kH H dx= p p  and k  are their coefficients. Note that integration with 

respect to y can be done similarly. The additional polynomial term in both Equation  (10) and Equation (11) can 

be achieved by minimizing the sum of squared errors as nicely done in [65]. Nevertheless, we have observed from 

the work of [63] that the method can still perform well even without the polynomial term so it is omitted in this 

work.  

As previously stated, only the multiquadric MQ-RBF is considered and according to Shu and Wu [63], the 

expressions for the integrated MQ-RBF can be expressed as follows 
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With the omission of the polynomial for the term ( )kH p , the approximation of u  by this method can be written 

as 

( ) ( )
1

N

k k

k

u H
=

=p p . (14) 
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Equation (14) is discovered to have N  freedoms in the current method, which can be used to construct an N −

dimensional linear vector space. In this equation, ( ) , 1, 2,...,kH k N=p  forms a set of base functions in NV

. As a result, the weighting coefficients 
( ),n

ijw


 can be calculated in the same manner as in Section   2.1 and are 

represented by the following formula: 

( )  
( ) ( )

( )

1,
, 1,2,...,

n

n i

i n

H
w B i N





− 
= =



p
, (15) 

Where 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

N

N

N N N N

H H H

H H H
B

H H H

 
 
 

=  
 
 
 

p p p

p p p

p p p

. (16) 

Considering that we differentiate  's integrated form, the approach is referred to as the "Indirect method (iDR)." 

3. IMPLEMENTATION TO THE TIME-DEPENDENT CONVECTION-DIFFUSION PROBLEMS 

In this work, two-dimensional convection-diffusion problems defined on domain   with boundary   that are 

modeled and governed by the following partial differential equation are to be numerically solved. Implementation 

to the time-dependent convection-diffusion problems 

( )
2 2

2 2
, ,x y x y

u u u u u
V V u g x y t

t x y x y
  

    
+ + = + − +

    
, (17) 

where x  and 
y  are diffusion coefficients and xV  and 

yV  are convection coefficients. The final two terms   

and the source term ( ), ,g x y t  are optional and only required in certain cases. The following initial condition is 

given  

( )0 1, ( ) ,u t = p p p . (18) 

With also the boundary condition expressed as follows  

( ) 2 0, ( , ), , .u t t t t=  p p p . (19) 

In this work, the main attention is paid to problems in two dimensions only, hence for p , 

( ),x y=p . (20) 

The two collocation meshfree methods, DR and iDR, previously detailed in the previous section are now 

implemented to the above equation. For the transient problem, one of the most often used techniques for finding 

numerical solutions to time dependent partial differential equations is the forward time stepping strategy and it is 

used in this work. The time discretization for ( 0 0,t t t t +  is approximated as follows 
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 
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 (21) 

By substituting back into Equation (17), the following statement can be further proceeded,  

( ) ( )
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p

p

 (22) 

Equation (8) is substituted into Equation (22) to produce 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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1 1

1, 1,

1 1

,

,

N N
x y

i t t i x ij t t j y ij t t j
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for 1,2,..., .i N=   

Therefore, for each ip , it leads to  

( ) ( )(
( ) ( ) )

2, 2,

1, 1,
.

x y

t t t x t t y t t
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where ( ) ( ) ( )1 2, , , ,..., ,
T

t Nu t u t u t=   U p p p , 

( ) ( ) ( )1 2, , , ,..., ,
T

t t Nu t t u t t u t t− = − − −  U p p p ,

( ) ( ) ( )1 2, , , ,..., ,
T
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( ) ( ) ( ) ( ), , , ,

1 2| | ... |
T

n n n n

Nw w w
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 
w which can be briefly provided for the two different meshless methods 

as follows.  

• For the direct method (DR) it is of the following form  
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where 
1 ja  are elements of  

1
A

−
in Equation (7).  

• For the indirect method (iDR) it is of the following form  
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j j j

H H H
b b b

x x x

H H H
b b b

x x x

H H H
b b b

x x x

= = =

= = =

= = =

   
 

   
 

   
 =   
 
 
 

   
    

  

  

  

p p p

p p p

w

p p p

, 

where 
1 jb  are elements of  

1
B

−

in Equation (15).  

4. NUMERICAL COMPONENTS 

4.1. The algorithm 

Step 1. Generate the set of points  
1

N

i=
p  in the domain   and divide it into two non-intersecting sets: the 

set of interior points on   ( 
1

Ni

i=
p , containing iN  elements), and the set of boundary points on   ( 

1

i

i

N Nb

i N

+

= +
p  , 

containing bN  elements), where .i bN N N+ =  

Step 2. Calculate the matrices 
( )1,x

w , 
( )2,x

w , 
( )1,x

w  and 
( )2, y

w  using the format should be calculated with 

( ) ( ) ( ) ( ), , , ,

1 2| | ... |
T

n n n n

Nw w w
    =

 
w .  

• The vector 
( ),n

iw


 is taken on the form of Equation (7), for 1, 2,..., ,i N= for DR method.  

• It is of the form of Equation (15) for 1, 2,..., ,i N=  if the iDR is under consideration. 

Step 3. The following operations are carried out during each iteration. 

3.1. Apply the initial condition at 0t t=  by specifying the following.  

      ( ) 1( ) , for 1,2,..., .i iu i N= =p p  

 

3.2. Apply the boundary conditions. 

       ( ) 2 ( , ) ,i iu t=p p  for 1, 2,...,i i i bi N N N N= + + +  and 0.t t  

3.3. Use Equation (23) to determine the approximate value of ( ), ,iu tp for 1,2,..., .i N=  

3.4. For the next time step, setting 

      ( ) ( ), ,i iu t t u t− p p  for 1, 2,..., ,i N= and .t t t−    

Step 4. The calculation comes to an end at .endt t=   
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    Therefore, the approximate values of ( ),i endu tp  is now obtained.  

Step 5. Validate the approximate solution using the following criteria. 

4.2. Solution validation criteria 

Regarding the quality of the solutions obtained from the two proposed meshless methods, the first criterion is on 

the accuracy and two error measurements (defined for a location ip  at time t ) are employed.  

1. The relative error norm ( .Rel Err ), defined as 

.Rel Err  

( )

2

1

2

1

( ( , ) ( , ))

( , )

N
exact num

i i

i

N
exact

i

i

u t u t

u t

=

=

−

=




p p

p

, (25) 

2. The root mean square error (RMSE), defined as 

RMSE ( )
2

1

1
( , ) ( , )

N
exact num

i i

i

u t u t
N =

= − p p , (26) 

where ( , )exact

iu tp  is the exact solution and ( , )num

iu tp  is the numerical one, both measured at node ip  and a 

target/final time t . The results obtained through this work are verified against their exact ones and those found 

in literature, if available. Additionally, it is of interest to observe the issue related to the use of RBF-based 

numerical techniques which is the sensitivity to shape parameter.  

5. NUMERICAL EXPERIMENTS WITH RESULTS AND GENERAL DISCUSSION 

5.1. Example 1 

To test out the two meshless methods, let’s firstly examine a dimensionless diffusion equation in this example, as 

provided in [66], 

2 2

2 2

u u u

t x y

  
= +

  
. (27) 

The assumption is that the problem domain is a square domain    0.5,0.5 0.5,0.5 −  −p , the initial 

condition is ( )0, 1u t =p  and Dirichlet jump boundary condition is ( ), 0.u t =p  The exact solution is given by 

[67], expressed as follows 

 

( ) ( ) ( )2

16
, , ,exact exactu t u x t u y t


=p , (28) 

with x =  or y . The following is obtained, 

( )
( ) ( ) ( )

2 2

0

1 exp 2 1 cos 2 1
, .

2 1

i

exact

i

i t i
u t

i

 




=

 − − + +   
=

+
  (29) 

In examining radial basis function (RBF)-based approaches, the impact of the 'shape parameter, ( c )' emerges as 

a fundamental aspect. This is substantiated in Figure 1, which presents a detailed analysis of the root mean square 
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error (RMSE) across different shape parameter values in two non-grid-based (meshless) methods at two distinct 

time intervals, 
210t −= and 

310t −= . A key observation from this analysis is the identification of an optimal 

range for the shape parameter, roughly between 0.25 and 0.75. Within this interval, the RMSE maintains lower 

levels, indicating more accurate results. Conversely, shape parameter values outside this range result in 

significantly higher error levels. An additional noteworthy trend is the inverse relationship between the magnitude 

of the shape parameter and the accuracy of both evaluated schemes, DR and iDR. This highlights the critical 

influence of the shape parameter on the performance and reliability of RBF-based computational methods. 

 

Figure 1: Root mean square error (RMSE) measured at different shape values ( c ) produced by the two 

meshless methods at two target times: 0.01t =  and 0.001 . 

 

Figure 2: Solution profiles using 0.0001t =   and 21 21N =  : First row at 0.01t = ; (a) the exact, (b) 

DR with 0.301c = , and (c) iDR with 0.501c = . Second row at 0.001t = ; (d) the exact, (e) DR with 

0.251c = , and (f) iDR with 0.351c = . 

In the conducted study, as depicted in Figure 2, the comparative analysis of solution profiles generated by two 

distinct meshless methodologies is presented. These profiles were evaluated at two temporal junctures, 
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specifically at 
210t −=  and 

310t −= . Each graphical representation in the figure adheres to the most effective 

shape parameter, maintaining a constant time step size of 
410t − = and a uniform node density configured at 

21 21N =  . Initial observations indicate a pronounced gradient in the flow variable along the peripheries at 

the onset of the phenomenon, which progressively smoothens as time advances. 

Quantitatively, at the 
210t −= interval, the DR meshless approach registers RMSE values of 

2.26 03MSE ER = − and . 2.63 03Rel Err E= − . In contrast, the iDR methodology yields RMSE figures 

of 9.79 03MSE ER = −  and . 1.14 02Rel Err E= − . Advancing the temporal frame to 
310t −= , the DR 

method demonstrates RMSE values of 5.58 04MSE ER = − and . 8.61 04Rel Err E= − , while the iDR 

approach results in RMSE values of 2.49 03MSE ER = − and . 3.84 03Rel Err E= − . This initial 

numerical experimentation allows for the inference that, given the utilization of an optimal shape parameter, the 

DR methodology exhibits marginally superior accuracy in comparison to the iDR approach. 

Upon comparison with the results documented in [66], it is observed that the overall performance, in terms of 

accuracy, is approximately equivalent. It is important to note, however, that the comparable quality of approximate 

solutions achieved in their study was facilitated by the use of a significantly denser node grid, namely a 51 51  

configuration. This distinction may be attributed to the localized nature of the collocation methods employed in 

their research, which markedly contrasts with the global methodology developed and implemented in our present 

study. 

5.2. Example 2 

In this example, the problem investigated in [54, 68] is numerically solved. In this case, the convection and 

diffusion coefficients are both set to constant values of 0.8x yV V= =  and 0.01x y = = , respectively, with 

( ) 0g x = = . The exact solution is provided as follows 

 

( )
( )

( )

( )

( )

2 2
0.8 0.5 0.8 0.51

, exp( )
4 1 0.01 4 1 0.01 4 1

x t y t
u t

t t t

 − − − −
= − + 

+ + +  

p . (30) 

The exact is defined over a square domain    0.5,2 0.5,2 p  and is used as the source for both the initial 

and boundary conditions.  

In Table 1, an evaluation is presented on the performance of two meshfree methods, with a focus on relative errors 

( .Rel Err ) over time progression. This assessment encompasses a range of time step sizes, specifically t  values 

of 
210−

, 
310−

 and 
410−

. The results demonstrate a high degree of alignment between the approximate solutions 

provided by these methods and the exact solutions, consistent across all target times and the mentioned t  

increments. Nevertheless, there are distinct patterns in the trends of their solutions. A key observation is the 

improvement in accuracy as the time step sizes decrease, particularly evident for most of the selected target times. 

However, a notable exception is observed in the longitudinal performance of the simulations. Generally, a gradual 

decline in accuracy is noted as time progresses. This trend is interrupted in two specific cases involving the DR 

method with t  values of 
310−

and 
410−

. In these instances, there is a surprising reduction in relative errors, 

highlighting an area of interest for further study into the behavior of the DR method under such parameters. 

In the comparative analysis of the efficacy of two meshless methodologies, an examination of Figure 3 elucidates 

the accuracy trends correlated with incremental node density enhancement, spanning from 10 10, 15 15N =    

to 20 20 , at successive time steps within the range of 0.10 – 1.00. The data distinctly demonstrates that across 
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all node dimensions, the DR method exhibits superior performance over the iDR approach. Notably, DR maintains 

consistent accuracy irrespective of node size variations and temporal progression, though minor fluctuations are 

observable with coarser nodes at initial timeframes. Further corroboration of DR's predominance over iDR is 

evident in its sustained accuracy in tracking the moving pulse over time, as illustrated in Figure 4. This figure 

reveals that while both methods yield reasonable phase alignment of the pulse, the amplitude replication is notably 

deficient in the iDR method, as delineated in Figure 4(i). 

In accordance with the findings delineated in [54], it is intriguingly observed that the utilization of globally derived 

numerical approaches yields a performance superior to that achieved in the current study. This disparity in 

outcomes may be ascribed to the selection of Radial Basis Functions (RBFs) used, particularly the inverse variant 

of Multiquadric (MQ), as implemented in their investigation. This aspect presents a potential avenue for further 

investigation in our subsequent research endeavors. Additionally, both studies exhibit a similar trend of error 

increment over time, which is consistent in most instances. In contrast to [68], it is important to acknowledge that 

although the nature of the problem being investigated remains consistent, the specific details of the problem, 

particularly the range of the convection and diffusion coefficients, are significantly distinct. Furthermore, the 

numerical scheme employed in their research was developed at a considerably higher order and executed without 

incorporating Radial Basis Functions. Despite these differences, both studies benchmark their performance against 

the exact solution form, which is a reasonable approach. It should be duly noted that this concise yet noteworthy 

observation is also applicable to the subsequent example. 

Table 1: Relative errors ( .Rel Err ) progression at each time (0,1]t , computed using 15 15N =   and 

three time step sizes 
2 310 ,10t − − = , and 

410−
 

t  

0.01t =  0.001t =  0.0001t =  

DR 

( 0.36c = ) 

iDR 

( 2.39c = ) 

DR 

( 0.36c = ) 

iDR 

( 2.39c = ) 

DR 

( 0.36c = ) 

iDR 

( 2.39c = ) 

0.1 1.507E-01 3.021E-01 1.482E-01 3.093E-01 1.483E-01 3.101E-01 

0.2 1.261E-01 3.110E-01 1.074E-01 3.189E-01 1.081E-01 3.200E-01 

0.3 1.731E-01 4.296E-01 1.253E-01 4.076E-01 1.252E-01 4.060E-01 

0.4 1.893E-01 4.931E-01 1.049E-01 4.566E-01 1.046E-01 4.539E-01 

0.5 2.132E-01 5.377E-01 9.191E-02 4.949E-01 9.082E-02 4.919E-01 

0.6 2.355E-01 6.215E-01 8.103E-02 5.577E-01 7.914E-02 5.530E-01 

0.7 2.562E-01 7.234E-01 7.278E-02 6.300E-01 6.998E-02 6.230E-01 

0.8 2.748E-01 7.674E-01 6.653E-02 6.573E-01 6.277E-02 6.494E-01 

0.9 2.913E-01 7.453E-01 6.167E-02 6.303E-01 5.694E-02 6.228E-01 

1.0 3.059E-01 7.408E-01 5.782E-02 6.218E-01 5.212E-02 6.149E-01 
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Figure 3: Relative error ( .Rel Err ) measured at different target times for the two meshless methods at three 

levels of node density; 10 10, 15 15,N =   and 20 20 . 

 

Figure 4: Approximation of the moving pulse with the two meshless methods at   0.1,0.5,1.0 ,t = using 

0.0001t =  and 20 20N =  ; (a-d-g) Exact, (b-e-h) DR with 0.22c = , and (c-f-i) iDR with 0.18c = . 

 

5.3. Example 3 

Another challenging problem is that investigated in [54, 68] where the governing equation   is the same as 

previously investigated in Example 2, except that 0 =  with the following the source term 
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( ) ( )( ) ( ) ( )( )33
, cos exp( )x y x x y y x yg t x y V V t     = + + − +p . (31) 

All boundary conditions are taken from the analytical solution, which is given as follows,  

( ) ( ) ( ) ( )( )33
, sin exp( )x y x yu t x y t   = + − +p . (32) 

The problem is defined on the computational domain    0,2 0,2 =  . 

In the present study, the investigation focuses on analyzing the capability of different approaches to address 

convection-dominated scenarios. This is achieved by incorporating the Péclet number ( Pe ), a crucial metric 

representing the convection to diffusion rate ratio. The escalation of Pe poses a significant challenge for 

numerical methodologies, a phenomenon explored in this research through the amplification of convection 

coefficients, V , in both directions. Maintaining a constant diffusion coefficient, the study presents in Table 2 the 

approximate solutions derived from two distinct schemes. These solutions are calculated at 0.01t = , utilizing a 

0.0001t =  and examining three varying node densities ( 7, 13 13,7N  = and 23 23 ), across a V

range of 100 to 400. The results elucidate a gradual decline in accuracy for both methods as the scenarios become 

increasingly convection-dominated, a pattern consistent across all node sizes examined. Interestingly, at lower 

node densities, the indirect method (iDR) demonstrates a marginally superior performance compared to the direct 

method (DR) as V escalates. Conversely, this trend reverses with the inclusion of a greater number of nodes. 

In advanced thermal dynamics research, where convection coefficients surpass certain thresholds (specifically), 

the focus shifts to examining higher coefficients, such as 500V = . This investigation is captured in Figure 5, 

which presents numerical solutions along the x y= axis, recorded at a specific time frame of 0.01t = . This 

analysis utilizes a time step of 0.0001t = , incorporating three different levels of node density for 

comprehensive evaluation. The study compares two methodologies: Direct Representation (DR) and indirect 

Direct Representation (iDR). The results demonstrate a significant alignment of both methods with the exact 

solutions, maintaining this consistency across varying node sizes. In contrast, analysis along the line 2x y= − , 

detailed in Figure 6, reveals a distinctive insight. Here, the direct method proves more effective than its indirect 

counterpart in addressing instabilities at boundary layers, especially at corner points, under conditions of high 

Péclet numbers ( Pe =600). This phenomenon continues to be evident in scenarios extending beyond these 

specific conditions, though such results are not included in this report. 

In the context of simulation duration, Table 3 presents the computational time (Ctm.) in seconds across various 

x yV V V= = , 1x y = =  settings, alongside node refinement at 0.01t =  and 0.0001t = . This data 

reveals that iDR consistently demands around 50% less time compared to DR, irrespective of the Pe values and 

the scale of computational nodes. Additionally, it should be noted that the values showcased in this instance derive 

from a somewhat improvised selection of the optimal shape parameter. 

Table 2: Relative error ( .Rel Err ) revealed from each RBF at different values 
x yV V V= = , 1x y = = , 

and nodes refinement ( N ) at 0.01t =  and 0.0001t =  

.Rel Err  

7 7N =   1313N =   2323N =   

DR 

( 3c = ) 

iDR 

( 4.6c = ) 

DR 

( 3c = ) 

iDR 

( 4.6c = ) 

DR 

( 3c = ) 

iDR 

( 3.5c = ) 

V=100 2.922E-04 8.081E-05 1.889E-05 6.966E-05 1.620E-05 1.624E-04 

V=200 8.209E-04 2.637E-04 3.165E-05 1.373E-04 3.169E-05 3.892E-04 

V=300 1.120E-03 3.583E-04 1.420E-04 2.030E-04 5.908E-05 6.687E-04 

V=400 3.713E-03 1.551E-03 3.034E-03 4.161E-04 8.926E-04 1.151E-03 
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Table 3: Computational time (Ctm.) (in seconds ) revealed from each meshless method at different values 

x yV V V= = , 1x y = = and nodes refinement ( N ) at 0.01t =  and 0.0001t =  

Ctm. 

7 7N =   1313N =   2323N =   

DR 

( 3c = ) 

iDR 

( 4.6c = ) 

DR 

( 3c = ) 

iDR 

( 4.6c = ) 

DR 

( 3c = ) 

iDR 

( 3.5c = ) 

V=100 8.084E-02 4.547E-01 9.374E-01 4.307E-01 8.872E+00 3.011E+00 

V=200 8.221E-02 1.387E-01 9.039E-01 4.148E-01 8.814E+00 2.430E+00 

V=300 8.179E-02 1.518E-01 8.935E-01 4.322E-01 8.683E+00 2.115E+00 

V=400 8.291E-02 1.512E-01 8.959E-01 4.413E-01 8.911E+00 3.196E+00 

 

 

Figure 5: Solution comparison computed on the x y=  straight line for , , 500,x yV V= =  1x y = =  

recorded at 0.01t =  using 0.0001t =  with three levels of node densities. 
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Figure 6: Solution surface plots computed for , , 600, 1x y x yV V  = = = =  at 0.01t =  and 0.0001t =  

with 23 23N =  ; (top) exact, (middle) DR, and (bottom) iDR. 

5.4. Example 4 

As the last experiment, the problem that [29, 54, 69] mentioned and numerically examined which is the linear 

advection-diffusion equation, expressed below, is tackled, 
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2 2

2 2x y x y

u u u u u
V V

t x y x y
 

    
= + + +

    
, (33) 

where each of , ,x y x yV V V   = = =  is a constant. The problem domain is assumed to be a square domain 

   0,1 0,1 p , and the initial condition is ( )0, yx
C yC x

u t e e
−−

= +p , and the Dirichlet boundary conditions 

are defined as follows 

( ) ( ), yx
C yC xtu t e e e

−−
= +p , (34) 

where ( )( )2
4 / 2x x x x xC V V  = + +  and ( )

2

4 / 2y y y y yC V V  
 

= + + 
 

. 

In the conducted research, quantitative assessments were performed at specific points utilizing a time step 

0.001t = , with 1x yV V= = , 0.8x y = = . The time was fixed at 0.05t = , and a node grid of 

11 11N =  . These results are detailed in Table 4. Upon analysis and comparison with both exact solutions and 

those found in existing literature ([29] and [54] with different optimal value of shape parameter), it is evident that 

the implemented methods demonstrate competent performance, yielding results of comparable quality across the 

selected locations. A recurring challenge in these simulations is the determination of an optimal shape parameter, 

a dilemma consistent with previous studies. As depicted in Figure 7, the impact of varying node counts (

2 2 210 , 15 , 23N = ) on solution accuracy was explored, particularly concerning shape parameter values ranging 

from 0.001 to 10.00, applied to both DR and iDR meshless methods. A notable trend observed is the decreasing 

accuracy of simulations with higher shape parameter values. The optimal range for this parameter appears to be 

around 1.00. Furthermore, the study reveals that at identical shape parameter values, the DR method slightly 

outperforms the iDR method in terms of numerical solution accuracy, and a denser node configuration tends to 

increase error values. 

Table 4: Numerical solutions produced by each method (this work and together with some from literature) 

compared to the exacts; using 0.001t =  for 1x yV V= = , 0.8x y = =  and 0.05t = , using 

11 11.N =   

Internal 

Node 

This work From literature 

Exact 
DR 

( 1.39c = ) 

iDR 

( 1.12c = ) 

DRBEM 

[54] 

IMQ 

( 0.104c = )[29] 

TPS 

[29] 

(0.1,0.1) 1.737710 1.737707 - 1.732981 1.737215 1.737696 

(0.5,0.1) 1.274223 1.274221 1.26601 1.265541 1.273859 1.274227 

(0.9,0.1) 1.057990 1.057992 1.04109 1.053769 1.058015 1.057985 

(0.3,0.3) 1.186931 1.186929 - 1.169126 1.186137 1.186949 

(0.7,0.3) 0.870357 0.870361 0.89901 0.859154 0.870916 0.870372 

(0.1,0.5) 1.274223 1.274239 1.27012 1.265541 1.273859 1.274227 

(0.5,0.5) 0.810735 0.810733 - 0.799093 0.811537 0.810757 
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Figure 7: Root mean square error (RMSE) measured at different shape values for the two meshless methods at 

three levels of node densities: 10 10,15 15  , and 23 23 . 

In light of the preceding hypothesis regarding the optimal MQ shape parameter, a value of 1.00c = was selected 

for the study focusing on the enhancement of convection effects. This inquiry involved a series of numerical 

simulations, utilizing parameters such as 11 11N =  , t =0.001 and 0.0001, and t =1.00 and 1.50. 

Additionally, the convection coefficients were incremented across four levels (  2,4,6,8x yV V=  ), with the 

outcomes presented in Table 5. A notable observation was the formation of boundary layers along the peripheries 

concurrent with rising Pe values, which invariably led to a decrease in the accuracy of all approximate solutions 

under the various simulation conditions employed. Despite this, the overall fidelity of the results was deemed 

satisfactory, particularly noteworthy were those produced by the DR method (exhibiting a Relative Error less than 

0.0001) at 2x yV V= = and 1.00t = . Comparative analysis of the two time-step sizes featured in this table 

revealed negligible disparities in result quality within each method. It was observed that the DR method exhibited 

a consistent, albeit modest, superiority over the iDR method in most scenarios documented. 

In a scenario with elevated Pe  values, the graphical data presented in  Figure 8 provides a comparative analysis 

of the solution profiles derived from the implementation of two novel meshless methodologies, set side by side 

against the established exact solutions. The depicted surface visualizations correspond to various temporal 

markers, specifically  0.1,0.5,1.0,1.5t , utilizing a time step 0.0001t = and a nodal distribution of 

23 23N =  . Observations indicate that both methodologies exhibit a high degree of accuracy in emulating the 

surface topologies across all examined instances. This trend of precision is consistently maintained, as evidenced 

by the subsequent analyses for an additional temporal point, 2.0t = , as delineated in Figure 9. It is imperative 

to acknowledge that each simulation was conducted utilizing an ad-hoc 'optimal shape parameter', identified 

through empirical methodologies. 
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Table 5: Error measurements recorded at two target times ( 1.00,1.50t = ) using two time step sizes (

1.00 03, 1.00 04t E E = − − ) for different levels of convection effect (  2,4,6,8x yV V=  ), 

simulations produced by a fixed node size of 15 15 using the same shape value 1.00c =  

x yV V=  

( )1.4x y = =  

Error 

norms 
t  

1.00t =  1.50t =  

DR iDR DR iDR 

2 

.Rel Err  
0.001 8.77E-05 1.33E-04 1.07E-04 1.60E-04 

0.0001 8.72E-05 1.32E-04 1.07E-04 1.59E-04 

RMSE 
0.001 2.40E-04 3.63E-04 4.82E-04 7.20E-04 

0.0001 2.38E-04 3.60E-04 4.80E-04 7.16E-04 

4 

.Rel Err  
0.001 5.20E-04 5.62E-04 6.37E-04 5.92E-04 

0.0001 5.20E-04 5.61E-04 6.38E-04 5.91E-04 

RMSE 
0.001 1.08E-03 1.17E-03 2.18E-03 2.03E-03 

0.0001 1.08E-03 1.16E-03 2.18E-03 2.02E-03 

6 

.Rel Err  
0.001 2.04E-03 2.36E-03 2.50E-03 2.76E-03 

0.0001 2.04E-03 2.36E-03 2.50E-03 2.76E-03 

RMSE 
0.001 3.51E-03 4.07E-03 7.10E-03 7.85E-03 

0.0001 3.51E-03 4.07E-03 7.11E-03 7.85E-03 

8 

.Rel Err  
0.001 5.99E-03 7.14E-03 7.35E-03 9.92E-03 

0.0001 6.00E-03 7.15E-03 7.35E-03 9.94E-03 

RMSE 
0.001 9.10E-03 1.08E-02 1.84E-02 2.48E-02 

0.0001 9.10E-03 1.08E-02 1.84E-02 2.49E-02 

 

 

Figure 8: Solution surface plots computed for , , 10, 1.4x y x yV V  = = = =  at 0.1t = , 0.5t = , 1t = ,

1.5t =  using 0.0001t =  and 23 23N =  (DR with 0.35c =  and iDR with 0.26c = ). 
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Figure 9: Solution contours obtained for , , 10, 1.4x y x yV V  = = = =  measured at 2.0t =  using 

0.0001t =  and 30 30N =  ; (a) exact, (b) DR with 0.35c = , and (c) iDR with 0.26c = . 
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6. CONCLUSIONS 

This study explores the numerical modelling of the time-dependent convection-diffusion phenomenon in two 

dimensions, a subject with broad applications in science, engineering, and various other fields. Our primary aim 

is to apply and compare two mesh-independent numerical schemes: a derivative-based method known as Direct 

(DR) and an integration-based approach, termed Indirect (iDR). Both these methods are developed utilizing the 

concept of global collocation, employing the widely recognized multiquadric (MQ) radial basis function (RBF). 

We explore four test cases in this context, focusing on shape parameter sensitivity, time and node density 

performance, convection-dominated scenario handling, computational efficiency, and varying node counts and 

convection effects. The comprehensive analysis encompassing four numerical experiments with meshless 

methodologies, particularly the Direct (DR) and Indirect (iDR) methods, reveals key insights into their 

performance under varied conditions. Across the experiments, it is evident that the choice of shape parameter, 

predominantly within the 0.25 to 0.75 range, significantly influences accuracy, with optimal performance typically 

observed at around c =1.00. In terms of root mean square error (RMSE), the DR method generally exhibits 

superior precision, with values ranging from 0.00226 to 0.00558, compared to iDR's 0.00114 to 0.00979, 

especially in scenarios with smaller time steps ( t ) and higher node densities. The experiments also highlight a 

consistent trend where accuracy improves with smaller Δt sizes but declines over longer simulation durations. 

Notably, in convection-dominated scenarios (high Péclet numbers), the DR method tends to outperform iDR, 

particularly at higher node counts, although iDR shows marginally better performance at lower node densities and 

demands about 50% less computational time. Overall, these findings underscore the nuanced interplay between 

shape parameters, node density, time step size, and method selection in determining the accuracy and efficiency 

of meshless methodologies in various simulation contexts. 
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