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ABSTRACT

In this work, we studied the behaviour of electromagnetic wave as it

propagates through face centered cubic (fcc) lattice material with periodic

structure using Bloch theorem which was analyzed by one dimensional

wave equation solved by method of separation of variables. Bloch theorem

was linearised and superposed on the wave function as a modulator to the

free wave function constituting real part and imaginary part. The phonon

dispersion relation within the long wave limit and the implication of the

imposed Bloch function on the free electron model was analyzed for

different wavelength such as, ultraviolent, visible and infrared wavelengths

within the first Brilouin zone in conjunction with the real and imaginary part

of the wave function respectively coupled with the behaviour of the

dispersion relation. 
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1. INTRODUCTION 
The Bloch theory of the conduction properties of metals is based on the electrons assemblage
of independent particles obeying Bose-Einstein statistics followed with the fact that an
election is considered to be moving freely in the periodic lattice potential without being
scattered while the potential modulates the free electron wave function. This appears to
modify the relation between electron energy E and wave-vector K since the lattice vibrations
could be resolved into lattice waves. According to Klemens, [1] it is clear that electrons are
scattered by disturbances in the lattice of periodicity coupled with the emission or absorption
of phonon which may result from such process. This particular case could be handled by
perturbation as Bloch theory is not applicable to the concept. As a result of this shortcoming,
electromagnetic wave propagation approach becomes the in thing the material scientists have
resorted to understanding the response of material with periodic structure to under this
situation one notices that electromagnetic field propagated through it.

The propagation of electromagnetic wave in a medium with a collection of scatterer is an
old problem having to do with such diverse subjects as x-ray diffraction in crystals, the blue
colour of the sky, the theory of rainbows, light scattering from interstellar dust rainfall
measurement using radar, etc.
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Recently, there has been growing interest in EM wave propagation in natural and man-
made structures with periodic array of particles with microscopic dimensions that have
scattering characteristics. The stimulating ground was provided by experiments where for
instance the existence of photon bands in thin crystal of dielectric sphere has been
demonstrated and the possibility of the existence of band gap in the photonic band structure
observed [1–3]. In the frequency range of the photonic gap, the EM wave would not
propagate through the medium but rather suffers exponential decay which suggests the fact
there is an inhibition of electron hole radioactive recombination as the corresponding photon
frequency falls in the gap region.

So far, the photon band is periodic structure have been only examined theoretically only
in the scalar wave approximation where the vector nature of the EM field is neglected. This
has been studied by several researchers using the plane-wave (PW), the Kerringa-Kohn-
Rostker (KKR) or Augmented Plane-Wave (APW) method [4] with the general result that
for the material, the band gap appears in the entire Brillouin Zone. Also, the equation for
the electric displacement vector, D in a periodic structure with space-dependent real
dielectric constant ε(r) and the magnetic permeability, μ being uniform throughout has
been studied.

Other interesting study has been carried out [5] on analysis of wave propagation in a two-
dimensional photonic crystal focused on the use of Bloch modes where the wave coupling at
the interfaces is well explained using the reduced vector in the first Brillouin zone [5]. In the
work of Veselago, the theoretically analyzed theoretically the electromagnetic properties of
some media in which real part of the magnetic permeability, μ and electric permeability �,
were negative [6] it was found that this property gives rise to unexpected phenomena such
as negative refraction at the interface between the air and observed that a composite structure
consisting wire strips was demonstrated to refract negatively when electromagnetic wave
impinge on it from free space [7–10]. Other material where electromagnetic wave has
experienced negative refraction where it propagates is photonic crystals [11]. Van Roey in
his work derived a general beam propagation relation in a number of specific cases along
with the extensive simulation of wave propagation in variety of complex material. Scientists
have looked at the propagation of electromagnetic field through a conducting surface [12]
where the behaviour of wave propagated through such material coupled with the influence
of the dielectric function of the medium such on such material was analyzed. The effect of
variation of refractive index of FeS2 had also been carried out [13] A close look on the
concept made it clear to recognize the importance of the effect of the refractive index of the
medium which in reality gives rise to the two velocity components that normally result to
phase and group refractive indices as considered in the study of wave propagation [11].

Recently more complicated work had been embarked upon on the study of wave
propagation through a modeled thin film with dielectric perturbation in which W.K.B
approximation technique in conjunction with numerical approach were used [14, 15] in order
to analyze beam propagating through the film material.

In this work our interest is to study the electromagnetic wave propagation through a
metal using the concept of Bloch theorem in which we consider the first Brillion zone of
the Fermi surface. This is because of Bloch theory of the conduction properties of the
metal is based on the electron assemblage of independent particles obeying Bose-Einstein
statistics coupled with their unimpeded motion in the periodic lattice potential. Structure
of crystal using one dimensional Bloch theorem is assumed in order to analyze the
behavior of the wave function.
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2. FORMULATION WAVE EQUATION PROPAGATING
THROUGH FCC PERIODIC LATTICE WITH A GIVEN
DIELECTRIC CONSTANT
We begin with Maxwell’s equations that relate electromagnetic wave propagation through
material medium and the solid property of the material.

                                                                                                          

[1]

                                                                                                                        
[2]

                                                                                                                   
[3]

where D = εE and B = μH
ε and μ are the dielectric constant and permeability while j is the current due to the

conduction electrons. The permeability is assumed to be unity in the lattice medium.

Conversely, since ρ now is considered to result from charge density ρ ΄

given by

                                                                  Divρ = ρ΄                                                           [4]

Associated with jʹ the current density that exists in parallel with the current density due
to conduction electrons j given by 

                                                             

� div j΄ = 

                                                       

[5]

From equations 4 and 5, we can write

                                                                                                                                
[6]

Equation [6] represents the additional current [known as bound current] in conjunction to
the current associated with the conduction electrons.

Conversely, we consider j to be absorbed into as we regard the entire solid as the

medium through which electromagnetic wave propagates. For consistency, we take j = 0 in
equation [1and 2] obtaining 

                                             
and 

                                        
[7]

For wave with time variation eiωt travelling in the z-direction with E and H parallel to
x-and y-directions respectively, we have
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[8]

                                                                                                                        
[9]

Equations [8 and 9] enable us to obtain

                                                                                                                  
[10]

whose solution is given as

                                                                                                        
[11]

where one can write equation [11] thus

                                                                                    
[12]

However, base on the complexity of Hamiltonian involved in on the use of unconserved
momentum associated with the lattice we consider

                                                                                                  
(13)

In conjunction with free electron model 

                                                                                                                    
(14)

We obtain

                                                                                                             
(15)

and 

                                                                                                                     
(16)

With solutions given as 

                                                 

From Bloch theorem,
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where E(z) is the Bloch function in one dimension since in a Bravais lattice, a plane wave
function multiplies a function with periodicity of the Bravais lattice to give equation (5)
which is the Bloch theorem where eikx is wave function for free electron model.

The linearized periodic function U(x) modifies the wave function as given below

                                                                                                    (18)

and 

                                                                                                           
(19)

With normal incident wave to the metal, we considered three regions of electromagnetic
wave spectra such as ultraviolet, visible and infrared regions, λu, λv and λi for real and imaginary
part of the wave function. Similarly, by complete solution of the wave equation, we obtain

                                                                                            [20]

This expression satisfies the scalar wave equation with a(r) signifying the amplitude of the

wave propagating through the system. Noting that 

When the value of k2 as obtained above is substituted in equation [20], it gives the
expression as used in this work as below

                                                  
= 0                                         (21)

3. ANALYSIS OF BLOCH WAVE SOLUTION
It has been noted that the scattering vector of a EM waves from a single particle which is
considered spherical has been studied (Ugwu and Okeke 2006) as such, we assume that the
wave equation for the electric displacement vector, D in a periodic structure with a space-
dependent real dielectric constant, ε(x) having a uniform magnetic permeability, μ.

From Maxwell equations, the wave equation for D is 

                                                                                      
(22)

where V(x) is the potential given as

                                                                                                                   

(23)

Given that the electric displacement D satisfying Bloch theorem can be expanded in terms
of the plane wave is 

                                                                                                                

(24)

Where k is the Bloch momentum
Due to the orthogonality condition of the wave corresponding to the plane wave.
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This enables us to write the expansion co-efficient dG. Thus 

                                                    

(25)

Where

                                                                                                        
(26)

This equation reflects the dynamical theory of X-ray diffraction in a crystal.
We carried out the numerical computations for FCC lattice with a given dielectric constant

within first Brillouin zone for a number of sphere packing fraction.

4. RESULTS/DISCUSSION
The solution of equation [20] enables to spell out the total field propagating through the
material. 

Figure 1 represents the graph of wave function as a function E(x) of position(x) in one
dimension when λ1 = 250 × 10−9 in the real part. Figure 2 depicts the graph of wave function
E(x) as a function of position(x) in one dimension when λ1 = 250 × 10−9 imaginary part. This
particular graph maintain a damped periodic oscillation and the frequency decreases as it
tends to the origin and increases as it moves away from the origin.

Figure 3 represents the graph of wave function φ(x) as a function of position(x). Figure 4
also represent the graph of wave function E(x) as a function of position(x) in one dimension
when λ2 = 650 × 10−9 in real and imaginary part respectively. These graphs experience a
damped oscillation tending to a fractal meaning that it has the same statistical function as a
whole with increase in frequency.
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Figure 1: Wave function ψ (x) abs a function of position (x) for real part when 
λ1 = 250 × 10�9



Figure 5 shows the graph of wave function E(x) as a function of position(x) and Figure 6
also represent the graph of wave function when λ3 = 950 × 10−9 in real and imaginary part.
These graphs have very high oscillatory frequency which is comparable as seen in Fig 4.3
and Fig 4.4. They maintained the same damped oscillation characteristic leading to a fractal
display in their profiles with the same statistical distribution pattern as a whole.

The photon band in this material as computed here was considered as a dielectric
perturbation, Figure 7 which ranged from 1.0 to 13.25 experienced by the free photo bands
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Figure 2: Wave function ψ (x) as a function of position (x) for imaginary part
when λ2 = 250 × 10–9
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Figure 3: Wave function ψ (x) as a function position (x) for Real part when 
λ1 = 650 × 10–9



constrained within the first Brillouin zone, BZ of fcc without varying the packing fraction β
of the fcc sphere. (Ze and Sash, 1990) as large or small sphere affects the scattering strength.

6. CONCLUSION
From this work, we have been able to obtain from Maxwell equation a relation that depicts
a links between electromagnetic wave with unconserved momentum of the free electron in
the periodic lattice as in equation (17) in conjunction with the explicit deduction of the
expression for scalar wave equation for the free electron model. In the analysis as regards the
propagated wave profile depicted unique characteristic in accordance with the spectral
wavelength ranging from uv,visible and near-infrared within the considered first Brillouin
zone(BZ) [15–17]. As a matter of fact, it was observed in this work, there was no true band
gap extending throughout the said BZ for the studied structure as the scalar wave equation
was used instead of vector wave equation.
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Figure 4: Wave function ψ (x) as a function position (x) for imaginary part when 
λ1 = 650 × 10–9
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Figure 5: Wave function ψ (x) (x) a function of position (x) for real part, when 
λ3 = 950 × 10-9
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Figure 6: Wave function ψ (x) as a function of position (x) for imaginary part when
λ1 = 950 × 10–9

Figure 7: Photon bands in the fcc lattice structural material within the first BZ

Figure 8: Estimated forbidden band gap width in the long wave length range within
the BZ point of fcc
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