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ABSTRACT

The flow field under study is characterized by velocity components,

temperature and pressure in non-dimensional formulation. The flow is

driven by suction through the horizontal channel with permeable walls fixed

at different temperatures. In order to ascertain a better understanding of

the dynamic behavior of the flow, the Navier-Stokes equations and the

energy equation are solved concurrently applying a similarity

transformation technique. The hydrodynamic structures obtained from the

numerical integration include flow reversal or backward flow, collision zones

due to the coexistence of wall suction and flow reversal inside the channel,

the inflection through temperature distribution, the growth of thermal

gradients near the walls, and the sensitivity of normal pressure gradients to

the difference of temperatures at boundaries. These hydrodynamic

structures are investigated considering the influences of the Péclet number

P and the sensitivity of viscosity to thermal variations α which are the main

control parameters of the problem. 

Keywords: Two-dimensional channel flows, Creeping flows, Variable

viscosity, Similarity method, Nonlinear two-point boundary-value problem,

Numerical solutions

1. INTRODUCTION
The theoretical investigations of flows which develop within porous channels or tubes are
achieved by many scientists using the Navier-Stokes equations. These equations derive from
the conservations of mass and momentum. The Navier-Stokes equations also known as the
momentum equation are described by the velocity field components. The flow may be three-
dimensional or two-dimensional. In the first case, the flow is characterized by all the three
components of the velocity field. This case is usually encountered and highlights the reality
of some natural fluid motions but not reveals many rich hydrodynamic structures through the
recent literature about laminar flow processes [1, 2]. The second case is increasingly
considered since direct industrial applications are related to two-dimensional flows which
have also gained many theoretical and experimental supports in order to ascertain their
deeper understanding. These applications include petroleum industry, paper manufacturing,
filtration, irrigation, solar energy collectors, the boundary layer separation with suction or
injection, the separation of a binary mixture by gaseous diffusion, and purification in the
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biopharmaceutical industry. Indeed, the flow is assumed to be two-dimensional when the
velocity field presents the same behavior along a given direction, and is thereby described by
two components. 

The pioneer work about a two-dimensional porous channel flow is the study of Berman [3]
which provides a valuable method of solution called the similarity technique that many
scientists [4–9] are making increasing use for investigating flows between two permeable
walls. When the channel is porous or admits wall motion, or both, the flow is denoted as
Berman flow by some authors. 

The similarity technique is an indirect approach of seeking solution; such that, instead of
finding the velocity field itself which describes the Navier-Stokes equations for a given two-
dimensional flow, a single function related to the velocity components is adopted and its
corresponding differential equation is derived. The noted function which satisfies mass
conservation is defined in order to verify the boundary conditions of the problem and by
taking into consideration the geometry of the channel. After yielding the evolution of this
function, the velocity components can be derived. 

The similarity transformation of the Navier-Stokes equations introduced by Berman [3] is
later on widely used for studying flows through porous rectangular channels [10–15] and
cylindrical conducts [16–20]. In addition, when thermal effects are considered in the flow
domain, the energy equation is associated with the Navier-Stokes equations to model the
problem and a Berman type similarity solution can also be derived [21–27]. 

The present study is devoted to examine a creeping flow through a channel with two
porous walls kept at different temperatures. In fact, the creeping flow occurs when the fluid
is assumed highly viscous, so that inertial terms of the momentum equation are neglected
compared to viscous ones [28–29]. The temperature difference between the walls of the
channel causes the exponential variation of the dynamic viscosity. This variation couples the
Navier-Stokes equations to the energy equation. The desire is to investigate some
hydrodynamic structures due to variable high viscosity not considered in previous works.
The similarity technique is used to transform the Navier-Stokes equations and the energy
equation into two nonlinear ordinary differential equations which are then solved applying
the shooting technique associated with the fourth-order Runge-Kutta algorithm. The validity
of the numerical scheme is tested using the comparison of numerical results obtained for low
values of control parameters with the zero-order analytical solution. For adding clarity, the
efficiency of the numerical code is accepted if the numerical results approach the analytical
solution. The hydrodynamic structures obtained from the flow field characteristics enable to
extend the solution range to relevant physical meaning. 

The paper is organized as follows: Section 2 is about the model equations and a similarity
transformation approach. Sections 3 and 4 deal with the analytical approach for low values
of control numbers and the validity of the numerical scheme, respectively; while Section 5
is reserved to the results analysis. Section 6 is devoted to the conclusion.

2. PROBLEM FORMULATION
The creeping flow occurs between two horizontal rigid planes. Both planes which are the
walls of the channel are parallel and uniformly permeable. In addition, the two planes are
distanced by 2 h known as the width of the channel which is small compared to the height.
The suction speed at walls V is assumed to be positive. The temperature at the cold wall is
T0 and that of the hot wall is T1, such that T1 > T0. The physical properties of the fluid are
the specific mass ρ, the thermal conductivity κ, and the temperature-dependent viscosity μ
which takes the value μ0 at temperature T0. The non-dimensional variables in terms of length,
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velocity, temperature, pressure, and viscosity are measured in units of (h), (V), (ΔΤ = T1 −
T0), (ρV2), and (μ0), respectively. Thus, the Reynolds number R = ρVh/μ0 and the Péclet
number P = ρVh/κ are derived. In all that follows, the variables are dimensionless. 

A plane Cartesian coordinate system (x, y) is considered, with the origin placed in the center
of the channel, such that x represents the coordinate in the streamwise direction, and y is the
transverse coordinate as shown in Fig. 1. The x-axis is parallel to the walls and the length of
the channel along this axis tends to infinity in order to neglect the influence at the ends. The
channel is horizontal, such that gravity has no considerable effects on the fluid flow. The flow
is assumed to be two-dimensional, so the velocity field has components as (u, v), where u is the
streamwise velocity and v denotes the transverse or the normal velocity. On the other hand, T
and p are the variables describing temperature and pressure, respectively. 

The fluid is supposed highly viscous, such that inertial terms can be ignored. Considering
the plane Cartesian geometry and the above non-dimensional variables the problem is
described by differential terms as follows:
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Figure 1: Typical plot of the horizontal channel showing some streamlines and
suction occurring at walls
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where eqn (1) is the continuity equation, eqns (2) and (3) represent the Navier-Stokes
equations, and eqn (4) describes the energy equation. The boundary conditions express the
no-slip condition, the equal fluxes and the difference of temperatures at walls:

                                     
u = 0, v = −1 and for  y = −1 

                                      
u = 0, v = +1 and for  y = 1

                                     

Due to the two-dimensional configuration of the problem, the introduction of the stream
function F in the governing equations is usual. The existence of the stream function F by
similarity transformation is associated with new functions θ, A and Q uniform to temperature
and pressure gradients, respectively. In addition, a detailed relationship of viscosity with
temperature is needed to complete the statement of the problem. For this, the literature offers
several possible choices; the usual ones are linear [24, 31], algebraic [23, 31] or exponential
behaviors [24–26]. The exponential law is suitable to the problem under study, and the new
functions are expressed as: 

                                                                                                         

                                                                                                
(6)

                                                    

                                                            μ(θ) = exp(−αθ)

where the non-dimensional parameter α = −(∂μ/∂θ)/μ is a measure of the sensitivity of
viscosity to thermal variations; it depends on the fluid properties and on the temperature
difference between the walls. It follows that, the dimensional viscosity varies between the
values μ0 at the cold wall (y = −1), and μ0 exp (−α) at the hot one (y = 1). Positive values of
the parameter α correspond to fluids whose viscosity decreases with temperature, the case of
most liquids. Negative values of α are in accordance with fluids where viscosity increases with
temperature, the case of some gases. Uniform viscosity corresponds to the case where α = 0.

The relationships of the non-dimensional velocity components u and v with the stream
function F agree with the continuity equation, and the new temperature field θ is suitable to
the boundary conditions. According to the geometrical configuration of the channel, the
above definitions about the axial pressure gradient per unit length A and the normal pressure
gradient Q are in accordance with the momentum conservation.

The curl of the momentum equation produces the vorticity transport process satisfied by
F, while function θ describes the similarity energy conservation. This set of differential
equations is given as follows:
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with the following boundary conditions: 

                                        

                                                                                

(8)

where

The expressions about pressure gradients are derived as: 
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The problem stated in eqns (7) and (8) is a nonlinear two-point boundary-value problem.
The nonlinearity of the differential equations of the problem is due to the correlations in
terms of the stream function and thermal gradients. These correlations are due themselves to
the dependence of the dynamic viscosity on temperature.

3. FLOW CHARACTERISTICS FOR SMALL VALUES OF
CONTROL NUMBERS
Low Péclet numbers provide an analytical solution of the problem which helps while testing
the validity of the numerical scheme in Section 4. In this investigation, the strategy consists
to find the analytical solution of the flow by writing the non-dimensional stream function
F, and the non-dimensional temperature θ, as Taylor series expansions in terms of small P.
One gets:
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The couple (F0, θ0) is the zero-order analytical solution of the flow which satisfies the
boundary conditions. That is:
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influence the dynamics discussed in this work. After finding solutions for F0 and θ0,
expressions from eqns (9) and (10) enable to derive the corresponding transverse pressure
gradient and axial pressure gradient per unit length. One obtains:

                                                      

(13)

                                                                                     
(14)

In Fig. 2 is plotted function F0 from the formulas (12), for different values of the parameter
α, and the zero-order normal pressure gradient Q0 is presented in Fig. 3 using the formula (13),
for R = 1. In addition, if the viscosity is uniform (α = 0) in the case where P = 0, the
investigation is reduced to a linear problem which provides an analytical solution as follows:
F = (y3 − 3y)/2 and θ = (y + 1)/2.

4. VALIDITY OF THE NUMERICAL SCHEME 
The numerical integration is based on the shooting method associated with the fourth-order
Runge-Kutta algorithm [22]. The nonlinear two-point boundary-value problem (7) and (8) is
transformed into an initial-value one. Since three of the six auxiliary conditions are of the
boundary value type, a numerical solution becomes dependent upon three initial guesses. The
fourth-order Runge-Kutta algorithm is applied to solve the obtained initial-value problem as
a set of six first-order coupled differential equations with three unspecified start-up
conditions among the six initial conditions. In seeking the three unknown initial guesses, an
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Figure 2: Zero-order analytical solution for the stream function

F0 

y

= 2

............... = 10
******** = 2

= 1

-.-.-.-.-.-.- = 5
+ + + + + = 10



optimization type problem is derived and the rapidly converging inverse Jacobian method is
applied in an iterative fashion and then, the numerical solution of the problem can be
provided.

To test the validity of the numerical scheme, functions θ and F are plotted for small values
of the Péclet number by setting α = −2. In that case, the numerical solution obtained must
agree with the analytical solution found in Section 3. It appears that for small values of the
Péclet number, the numerical solution tends to the zero-order analytical solution as shown in
Fig. 4, where the dash-dot curve is nearly identical to the solid line which corresponds to the
analytical solution for the non-dimensional temperature. On the other hand, different scales
are adopted in Fig. 5 in order to make the asymptotic curves distinguishable as the solution
branches for the non-dimensional stream function tend to a same constant curve. 

The problem is fully influenced by the Péclet number and the sensitivity of viscosity to
thermal variations, instead of the Reynolds number as usual. This behavior is in accordance with
the creeping flows where the contribution of the Reynolds number is reduced. For this reason,
the Péclet numbers are low and moderate because the flow occurs with weak velocities.

5. NUMERICAL RESULTS ANALYSIS
First of all, it is relevant to note that, the problem admits a basic solution in terms of velocity
components on the form:
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Figure 3: Zero-order analytical solution of the transverse pressure gradient for R = 1
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Figure 4: Comparison of the numerical solution with the zero-order analytical
solution for the non-dimensional temperature field by setting α = −2

Figure 5: Comparison of the numerical solution with the zero-order analytical
solution for the non-dimensional stream function by setting α = −2



This solution which satisfies the boundary conditions agrees with the Taylor profile
modified by the dependence of viscosity on temperature, but is not the complete solution of
differential equations of the current investigation. In three-dimensional computation
procedure, Fig. 6 shows that the streamwise velocity is influenced by the two space variables
and presents a parabolic behavior with the increase of x. On the other hand, the basic normal
velocity distribution as presented in Fig. 7 does not vary enough along the streamwise
direction; this behavior agrees with the pioneer assumption of Berman. For adding clarity,
the 2D-plots are convenient for further results which follow in this study since the
streamwise coordinate does not describe the similarity functions F and θ of the problem.

After finding solutions for the non-dimensional stream function and the non-dimensional
temperature, the solutions about velocity components are derived applying the similarity
property of eqns (6). At this stage, the importance to use the similarity method is confirmed,
because it enables the transformation of the four differential eqns (1)–(4) relative to velocity
components and temperature into a set of two coupled eqns (7) satisfied by the stream
function and a similarity function for the temperature field. 

Inside the channel, Fig. 8(a) shows that, for a given conductivity, the normal velocity
decreases with the sensitivity of viscosity to thermal variations. Hence, the increase of the
parameter α is not favorable to suction. The distribution of the normal velocity under
different conductivities depends on the sign of the fixed parameter α. Indeed, Fig. 8(b)
reveals that, moderate Péclet numbers are adverse to suction in the case of a negative fixed
sensitivity of viscosity to thermal variations. But a contrary behavior is observed in Fig. 8(c)
with a positive fixed sensitivity of viscosity to thermal variations. On the other hand, the
mass withdrawal phenomenon which occurs at walls due to suction is accompanied with
flow reversal process also known as backward flow within the channel. For clarity, the
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scenario of the reverse flow manifests itself by negative streamwise velocities per unit length
as shown in Fig. 8. However, the existence of the normal velocity for different values of
parameters confirms the opposing behaviors between suction and flow reversal. These
opposing effects in the channel are due to the high viscosity of the fluid which gives rise to
important viscous stresses, such that the motion of fluid particles is slowed enough in light
of Fig. 8. 

There are some zones of intersection through the axial velocity distribution where the
effects caused by different values of control numbers are identical as shown in Fig. 8. That
is because the high viscosity of the fluid is able to create some regions having the same
dynamic behavior within the channel. The streamwise velocity per unit length presents a
parabolic behavior which involves the dominance of the backward flow on suction. In
addition, the solution branches corresponding to P = 1.8 in Fig. 8(b), show a minimum value
of the axial velocity per unit length and the maximum normal velocity. These behaviors are
due to the simultaneous presence of suction and flow reversal with an attempt to create some
collision zones in the channel as found in previous studies [18, 30]. 

The distribution of thermal gradients in the channel through Fig. 9 reveals the location of
the maxima at walls. That is because suction increases the thermal gradients at walls.
Furthermore, the minima of these thermal gradients are situated around the middle of the
flow region, because the temperature does not vary enough at the vicinity of the center of the
channel. In Fig. 9(a), a solution branch with the maximum value at the cold wall is the one
with the minimum value near the hot wall. Every curve of Fig. 9(b) presents its respective
maximum at the hot wall for a fixed negative sensitivity of viscosity to thermal variations.
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Figure 9: Thermal gradients distribution: (a) for P = 7.2 under various values of the
sensitivity of viscosity to thermal variations, (b) for α = −12.1 under different values
of the Péclet number, (c) for α = +3.7 under different conductivities



However, the maxima of these curves move from the hot wall to the cold one when the
parameter α takes a positive value as illustrated in Fig. 9(c). The noted permutation
highlights the exchange of behavior with respect to the maxima of thermal gradients between
the two walls. This exchange of behavior is due to the sign of the parameter α and the
difference of temperatures at boundaries. In all cases, for each curve, function θ(1)(y)
decreases near the cold wall, and increases in the neighborhood of the hot wall as function
of the normal coordinate y. 

Important variations of temperature in Fig. 10(a) are observed near the walls due to
suction, but the curves are almost horizontal away from the walls. For this fact, the growth
of temperature reveals two concavities. The first concavity, situated at the vicinity of the cold
wall, is turned toward the stocking; and the second concavity, located in the neighborhood of
the hot wall is turned toward the top, as shown in Fig. 10(a) where is plotted function θ(y)
for different sensitivities of viscosity to thermal variations at fixed conductivity. It follows
that, the temperature distribution presents a large area of inflection. Since the temperature is
almost constant in a large area around the center of the channel, thermal gradients in that
zone tend to zero. In addition, by referring to Fig. 10(a), for a given Péclet number, the
temperature increases with the parameter α while the inflection disappears with the decrease
of this parameter.

For a fixed negative sensitivity of viscosity to thermal variations, Fig. 10(b) shows the
disappearance of the inflection and rapid growths of temperature are only observed near the hot
wall. In Fig. 10(b), the temperature increases with the decrease of the Péclet number. The
inflection appears again in the case of a fixed positive parameter α as shown in Fig. 10(c) where
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variations at the vicinity of the hot wall, (c) for α = +3.7 showing rapid variations at
the vicinity of the cold wall and a large inflection area



function θ(y) is plotted for different conductivities and presents rapid variations only at the
vicinity of the cold wall. Figures 10(b) and 10(c) show that the temperature distribution in
the channel tends to the linear law with the decrease of the Péclet number as found in
Section 3. 

For clarity, the rapid growth of temperature observed near the walls in Fig. 10(a), and only
near the cold wall in Fig. 10(c), disappears in the neighborhood of the cold wall in Fig. 10(b),
because the low temperature is not sensitive to the changes happening with respect to the
conductivity in the case of a fixed high negative sensitivity of viscosity to thermal variations. 

The data about pressure gradients can be obtained by setting R = 1 from the formulas (9)
and (10) after solving the vorticity equation and the energy equation. It is important to signal
that, in this study, the pressure in the flow region exists only in terms of pressure difference,
pressure gradients are then derived and inform about pressure variation rates inside the
channel. Furthermore, a fixed reference value is required in order to carry out the pressure
difference itself. But this fixed reference value does not interest the dynamics discussed in
this work. 

In light of Fig. 11(a), the maxima of the normal pressure gradients are located away from
the walls; this is most noticeable for α = −11.5, α = −8.5 and α = −4.6 because normal
pressure gradients increase near the cold wall and decrease near the hot wall at fixed
conductivity. In addition, through the channel, in the case of fixed conductivity, normal
pressure gradients diminish with the sensitivity of viscosity to thermal variations. In Fig. 11(b),
function Q which is plotted under different conductivities at a fixed negative parameter α,
shows that the normal pressure gradient is very sensitive to high temperature for high

356                                                  Modeling of heat and high viscous fluid distributions with variable viscosity
in a permeable channel

(a)

Q

y

= 1.03

............... = 11.5
******** = 8.5

= 4.6

-.-.-.-.-.-.- = 1.03
+ + + + + = 4.6

P = 7.2

Figure 11: (Continued)



Figure 11: Normal pressure gradients distribution: (a) for P = 7.2 under various values
of the sensitivity of viscosity to thermal variations, (b) for α = −12.1 under different
values of the Péclet number, (c) for α = +3.7 under different conductivities
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negative sensitivities of viscosity to thermal variations, since very rapid variations occur near
the hot wall. 

The behavior of the normal pressure gradient for different conductivities at a fixed
negative parameter α as plotted in Fig. 11(b) is reversed in Fig. 11(c) with a positive fixed
parameter α. More precisely, in Fig. 11(c), normal pressure gradients decrease at the vicinity
of the cold wall and increase near the hot wall. Furthermore, Fig. 11(c) shows that the
increase of function Q with the Péclet number is very noticeable away from the cold wall.
This characteristic of the normal pressure gradients presented in Fig. 11(c) is contrary to that
of Fig. 11(b) in a large area away from both walls.

6. CONCLUSION
The flow process or the fluid motion manifests itself at the macroscopic level as a
phenomenon of mass distribution combined with thermal conduction and convection. The
diffusion of momentum occurs due to the rubs of fluid layers from each other and the
diffusion coefficient associated is the dynamic viscosity or the shear viscosity. This shear
viscosity is at the origin of friction effects when the fluid is in contact with a solid wall. The
investigation of flows between two parallel porous walls kept at different temperatures is
interesting as the fluid is driven by suction while the dynamic viscosity varies with
temperature. The theory is indispensable to ensure a deeper understanding of such problems
as done in this work. It is found that, since wall suction and flow reversal occur
concurrently, some collision zones exist in the channel. In fact, the simultaneous existence
of wall suction and the backward flow is an attempt of mass conservation to be satisfied
within the channel. Indeed, the scenario of mass conservation is the one for which a given
fluid particle which leaves the channel by suction motion is replaced with another particle
in order to occupy the empty space thus created due to the reverse flow. Since the
streamwise velocity is in many cases negative according to the numerical results obtained,
this leads to conclusion that the effect of flow reversal is dominant on that of suction. This
domination holds only when the fluid flows with high viscosity. The difference of
temperatures causes different behaviors in terms of flow characteristics at the vicinity of
both walls of the channel by referring to the evolution of the transverse pressure gradient
which is very sensitive to high temperature near the hot wall for certain values of control
parameters. The normal pressure gradients diminish with the increase of the sensitivity of
viscosity to thermal variations at a given conductivity, reason why the backward flow is
very important for positive values of the parameter α. 
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