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ABSTRACT

Design of fuel tanks requires the knowledge of hydrodynamic pressure
distribution on the structure. These can be very useful for engineers and
designers to define appropriate material properties and shell thickness of
the structure to be resistant under sloshing or hydrodynamic loading.
Data presented in current tank design codes as Eurocode, are based on
simplified assumptions for the geometry and material tank properties. For
complex material data and complex tank geometry, numerical simulations
need to performed in order to reduce experimental tests that are costly
and take longer time to setup. Different formulations have been used for
sloshing tank analysis, including ALE (Arbitrary Lagrangian Eulerian) and
SPH (Smooth Particle Hydrodynamic). The ALE formulation uses a moving
mesh with a mesh velocity defined trough the structure motion. In this
paper the mathematical and numerical implementation of the FEM and
SPH formulations for sloshing problem are described. From different
simulations, it has been observed that for the SPH method to provide
similar results as ALE formulation, the SPH meshing, or SPH particle
spacing needs to be finer than ALE mesh. To validate the statement, we
perform a simulation of a sloshing analysis inside a partially filled tank. For
this simple, the particle spacing of SPH method needs to be at least two
times finer than ALE mesh. A contact algorithm is performed at the fluid
structure interface and SPH particles. In the paper the efficiency and
usefulness of two methods, often used in numerical simulations, are
compared.
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1. INTRODUCTION

In computational mechanics there is a growing interest in developing meshless methods and
particle methods as alternatives to traditional FEM (Finite Element Method). Among the
various meshfree and particle methods, Smoothed Particle Hydrodynamics (SPH) is the longest
established and is approaching a mature stage. SPH is a Lagrangian meshless method in which
the problem to be solved is discretized using particles that are free to move rather than element
tied by classical mesh connectivity. SPH method has been extensively used for high impact
velocity applications, in aerospace and defense industry for problems where classical FEM
methods fail due to high meshes distortion. For small deformation, FEM Lagrangian
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formulation can solve structure interface and material boundary accurately, the main limitation
of the formulation is high mesh distortion for large deformation and moving structure. One of
the commonly used approach to solve these problems is the ALE formulation which has been
used with success for simulation of fluid structure interaction with large structure motion such
as sloshing fuel tank in automotive industry and bird impact in aeronautic industry. It is well
known from previous analysis, see Aquelet et al. [1], that the classical FEM Lagrangian method
is not suitable for most of the FSI problems due to high mesh distortion in the fluid domain. To
overcome difficulties due to large mesh distortion, ALE formulation has been the only
alternative to solve fluid structure interaction for engineering problems. For the last decade,
SPH and DEM (Discrete Element Method), have been used usefully for engineering problems
to simulate high velocity impact problems, high explosive detonation in soil, underwater
explosion phenomena, and bird strike in aerospace industry, see Han et al. [2] for details
description of DEM method. SPH is a mesh free Lagrangian description of motion that can
provide many advantages in fluid mechanics and also for modelling large deformation in solid
mechanics. For some applications, including underwater explosion and hydrodynamic impact
on deformable structures, engineers have switched from ALE to SPH method to reduce CPU
time and save memory allocation. Unlike ALE method, and because of the absence of the mesh,
SPH method suffers from a lack of consistency than can lead to poor accuracy, as described in
Randles et al. [14] and Vignjevic et al. [16].

In this paper, devoted to ALE and SPH formulations for sloshing tank problems, the
mathematical and numerical implementation of FEM and SPH formulations are described.
From different simulations, it has been observed that for the SPH method to provide similar
results as FEM Lagrangian formulations, the SPH meshing, or SPH spacing particles needs
to be finer than the ALE mesh, see Messahel et al. [15] for underwater explosion problem.
To validate the statement on fluid structure interaction problems, we perform a simulation of
a sloshing problem. In the simulation, the particle spacing of SPH method needs to be at least
two times finer than ALE mesh. A contact algorithm is performed at the fluid structure
interface for both SPH and ALE formulations.

In Section 2, the governing equations of ALE formulation are described. In this section, we
discuss mesh motion as well as advection algorithms used to solve mass, momentum and
energy conservation in ALE formulation. Section 3 describes the SPH formulation, unlike FEM
formulation which based of the Galerkin approach, SPH is a collocation method. The last
section is devoted to numerical simulation of fluid sloshing inside a moving rigid structure
tank, using both FEM and SPH methods. To get comparable results between FEM and SPH,
the particle spacing of SPH method needs to be at least two times finer than FEM mesh.

2. ALE FORMULATION

A brief description of the FEM formulation used in this paper is presented, additional details
can be provided in Benson [4]. To solve fluid structure interaction problems, a Lagrangian
formulation is performed for the structure and an ALE formulation for the fluid material. In
general ALE description, an arbitrary referential coordinate is introduced in addition to the
Lagrangian and Eulerian coordinates. The material derivative with respect to the reference
coordinate can be described in equation (2.1). Thus substituting the relationship between
material time derivative and the reference configuration time derivative leads to the ALE
equations,

of(X,,1) _Of(x,.1) df(x,.1)
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where X; is the Lagrangian coordinate, x; the Eulerian coordinate, w; is the relative velocity.
Let denote by v the velocity of the material and by u the velocity of the mesh. In order to
simplify the equations we introduce the relative velocity w = v — u. Thus the governing
equations for the ALE formulation are given by the following conservation equations:

(1) Mass equation.

p v
iy 22 2.2
o Pax Vox 22

(i) Momentum equation.

%—0' +pb. — w%—
paf_ ij, j p,' p iaxj (23)

0;; is the stress tensor defined by 0= —p + 7, where 7is the shear stress from the constitutive
model, and p the pressure. The volumetric compressive stress p is computed though an
equation of state, and the shear stress from material constitutive law.

(iii) Energy equation.

pa—E:O'v +pbv—pwa—E 24
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Note that the Eulerian equations commonly used in fluid mechanics by the CFD community,
are derived by assuming that the velocity of the reference configuration is zero, u = 0, and
that the relative velocity between the material and the reference configuration is therefore the
material velocity, w = v. The term in the relative velocity in (2.3) and (2.4) is usually referred
to as the advective term, and accounts for the transport of the material past the mesh. It is the
additional term in the equations that makes solving the ALE equations much more difficult
numerically than the Lagrangian equations, where the relative velocity is zero.

There are two ways to implement the ALE equations, and they correspond to the two
approaches taken in implementing the Eulerian viewpoint in fluid mechanics. The first way
solves the fully coupled equations for computational fluid mechanics; this approach used by
different authors can handle only a single material in an element as described for example in
Benson [4]. The alternative approach is referred to as an operator split in the literature, where
the calculation, for each time step is divided into two phases. First a Lagrangian phase is
performed, in which the mesh moves with the material, in this phase the changes in velocity
and internal energy due to the internal and external forces are calculated. The equilibrium
equations are:

p2iza, +pb, 25)

pa—E=0',.v, +pb.v (2.6)
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In the Lagrangian phase, mass is automatically conserved, since no material flows across
element boundaries.
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In the second phase, the advection phase, transport of mass, energy and momentum across
element boundaries are computed; this may be thought of as remapping the displaced mesh at
the Lagrangian phase back to its original for Eulerian formulation or arbitrary location for ALE
formulation using smoothing algorithms. From a discretization point of view of (2.5) and (2.6),
one point integration is used for efficiency and to eliminate locking, Belytschko et al. [3], zero
energy modes are controlled with an hourglass viscosity. A shock viscosity, with linear and
quadratic terms developed by Von-Neumann and Richtmeyer in earlier fifties is used to resolve
the shock wave. The resolution is advanced in time with the central difference method, which
provides a second order accuracy for time integration.

For each node, the velocity and displacement are updated as follows:

™ =u""? + At M7 (F, +F,))

int
n+l _ _n—l1 n+1/2
X" =x""+Atu 2.7
where F,, is the internal vector force and F,,, the external vector force associated with body
forces, coupling forces, and pressure boundary conditions, M is a diagonal lumped mass
matrix. For each element of the mesh, the internal force is computed as follows:

Nelem
F = 2 _[B'.G.dv

int
k=1 k

B is the gradient matrix and Nelem the number of elements.
The time step size, At, is limited by the Courant stability condition [4], which may be
expressed as:

At < ! (2.8)
c

where [ is the characteristic length of the element, and ¢ the sound speed of the element
material. For a solid material, the speed of sound is defined as:

c= X 29
P (2.9

where p is the material density, K is the module of compressibility.

2.1. MOVING MESH ALGORITHM

The ALE algorithm used in the paper allows the fluid nodes to move in order to maintain the
integrity of the mesh. As the fluid impacts the plate, the fluid mesh moves with a mesh
velocity that is different from fluid particle velocity. The choice of the mesh velocity
constitutes one of the major problems with the ALE description. Different techniques have
been developed for updating the fluid mesh domain. For problems defined in simple
domains, the mesh velocity can be deduced through a uniform or non uniform distribution of
the nodes along straight lines ending at the moving boundaries. This technique has been used
for different applications including water wave problems. For general computational
domains, the mesh velocity is computed through partial differential equations, with
appropriate boundary conditions. For sloshing problem where the tank is moving with a
applied velocity that is time dependent, the fluid mesh moves as a rigid mesh following the
tank. This new ALE feature allows the mesh to stay regular, and the time step, which can be
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affected by mesh distortion, to be stable. In other words, there is only mesh motion and no
mesh distortion due to the ALE formulation. This method is very useful for moving or
rotating tanks, where the fluid mesh will move and rotate with the tank without undergoing
any mesh deformation.

The ALE algorithm used in the paper allows the fluid mesh to follow the movement of the
structure. The integrity of mesh structure is maintained. As the structure impacts the rigid
plate and then moves and rotates, the fluid mesh moves as a rigid mesh in the coordinate
system attached to the structure. This ALE algorithm can be applied to several problems in
moving structure that are rigid or undergo small deformations.

2.2. ADVECTION PHASE
In the second phase, the transport of mass, momentum and internal energy across the element
boundaries is computed. This phase may be considered as a ‘re-mapping’ phase. The
displaced mesh from the Lagrangian phase is remapped into the initial mesh for an Eulerian
formulation. To illustrate the advection phase, we consider in Figure 1.1, a simple problem
with 2 different materials, one with high pressure and the second a lower pressure. During
the Lagrangian phase, material with high pressure expands, and the mesh moves with the
material. Since we are using Eulerian formulation, the mesh is mapped to its initial
configuration, in the advection phase, material volume called flux is moving from element
to element, but we keep separate materials in the same element, using interface tracking
between materials inside an element. Conservation properties are performed during the
Lagrangian phase; stress computation, boundary conditions, contact forces are computed.
The advection phase can be seen as a remapping phase from a deformable mesh to initial
mesh for an Eulerian formulation, or to an arbitrary mesh for general ALE formulation. In
the advection phase, volume flux of material through element boundary needs to be
computed.

Once the flux on element faces of the mesh is computed, all state variables are updated
according to the following algorithm, using a finite volume algorithm (2.10),

VM =V M+ Y Flux, M (2.10)
-

where the superscripts ‘=" and ‘+’ refer to the solution values before and after the transport.
Values that are subscripted by j refer to the boundaries faces of the element, through which
the material flows, and the Flux; are the volume fluxes transported through adjacent
elements. The flux is positive if the element receives material and negative if the element
looses material.

The ALE multi-material method is attractive for solving a broad range of non-linear
problems in fluid and solid mechanics, because it allows arbitrary large deformations and
enables free surfaces to evolve. The advection phase of the method can be easily

implemented in an explicit Lagrangian finite element code.

3. SPH FORMULATION

The SPH method developed originally for solving astrophysics problem has been extended
to solid mechanics by Libersky et al. [8] to model problems involving large deformation
including high impact velocity. SPH method provides many advantages in modeling severe
deformation as compared to classical FEM formulation which suffers from high mesh
distortion. The method was first introduced by Lucy [9] and Monaghan et al. [11], for gas
dynamic problems and for problems where the main concern is a set of discrete physical
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particles than the continuum media. The method was extended to solve high impact velocity
in solid mechanics, CFD applications governed by Navier-Stokes equations, and fluid
structure interaction problems. It is well known from previous papers, Vila [17] that SPH
method suffers from lack of consistency that can lead to poor accuracy of motion
approximation.

A detailed overview of the SPH method is developed by Liu et al. [10], where the two
steps for representing a continuous function, using integral interpolation and kernel
approximation are given by (3.1) and (3.2),

u(xi)zju(y).5(xi —y)dy (3.1)
where the Dirac function satisfies:

oxi—y)=1x=y
oxi—y)=0x;#2y

The approximation of the integral function (3.1) is based on the kernel approximation W, that
approximates the Dirac function based on the smoothing length #, Figure 3.1,

_ L[4
W= .G(h)

that represents support of the kernel function. SPH interpolation is given by the following
equation (3.2):

u(x,)= Za)j u; .W(x—x;, h)
j

m,
where o, =—2 is the volume of the particle. The sum in equation (3.2) is over particles in the
" p,
support domain of the kernel as described in Figure 3.1.
Unlike FEM, where weak form Galerkin method with integration over mesh volume, is
common practice to obtain discrete set of equations, in SPH since there is no mesh,

A

o(d | h)

A
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Figure 3.1: Particle spacing and Kernel function
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collocation based method is used. In collocation method the discrete equations are obtained
by enforcing equilibrium equations, mass, linear momentum and energy, at each particle. In
SPH method, the following equations are solved for each particle (3.3),

d m,
—p. =—p. — (v, —v.)A.
P p,;p_(j DA,

J

d o, o,
=" =>m, [7 . —p—;Aﬁ] (3.3)

J i Jj
d  _P
Z e, szmj (v, =v,) A,
i

where p;, v;, e; are density, velocity and internal energy of particle, o;, m; are Cauchy stress
and particle mass.
A is the gradient of the kernel function defined by (3.4)

Ay =W =) (3.4)

) xi
It had be shown that convergence and stability of the SPH methods depends on the
distribution of particles in the domain.

In order to treat problem involving discontinuities in the flow variables such as shock
waves an additional dissipative term is added as an additional pressure term. This artificial
viscosity should be acting in the shock layer and neglected outside the shock layer. In this
simulation a pseudo-artificial pressure term (; derived by Monoghan et al. [12] is used. This
term is based on the classical Von Neumann artificial viscosity and is readapted to the SPH
formulation as follow,

ﬂ-l] = ﬁ 5 - ”C”, if vl]r,] <0 (In the shock layer) (35)
7t; = 0 (Outside the shock layer)

Where p1, = Yy p..:(p"+pf)’and ¢, (c+¢)

, are respectively the average density
Vorivent 2

and speed of sound, € is small perturbation that is added to momentum and energy equations
to avoid singularities, finally ¢ and B in equation (5.1) are respectively the linear and
quadratic coefficients.

4. CONSTITUTIVE MATERIAL MODELS FOR WATER

In this paper a Newtonian fluid constitutive material law is used water, see Table 1. For pressure
response, Mie Gruneisen equation of state is used with parameters defined in Table 2, which
defines material’s volumetric strength and pressure to density ratio. Pressure in Mie Gruneisen
equation of state is defined by equation (4.1)

P=p,. —HED (4.1)
(—s(u—1))
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Where C is the bulk speed of sound, u= ﬁ—1, where p, and p are the initial and current

0
densities. The coefficient s is the linear Hugoniot slope coefficient of the shock velocity
particle velocity (U, — U,) curve, equation (4.2),

U=c+s-U, 4.2)

Ui is the shock wave velocity, U, is the particle velocity. This equation of state requires
fluid specific coefficient S, which is obtained through shock experiment by curve fitting of
the U, — U, relationship. Shock experiments on fluids and solids provide a relation between
the shock speed U, and the particle velocity behind the shock, U), along the locus of shocked
states.

An important phenomenon that arises during hydrodynamic impact is the formation of
shock, mathematically equations (3.1)—(3.3) develop a shock, which lead to non continuous
solution and the problem is well posed only if the shock conditions are satisfied. These
conditions called Rankine Hugoniot conditions describe the relationship between the states
on both sides of the shock for conservation of mass, momentum and energy across the shock,
and are derived by enforcing the conservation laws in integral form over a control volume
that includes the shock. In the absence of numerical viscosity, high non physical oscillations
are generated in the immediate vicinity of the shock.

5. NUMERICAL SIMULATIONS

5.1. FLUID-STRUCTURE CONTACT ALGORITHM

For SPH and ALE simulations, a penalty type contact is used to model the interaction
between the fluid and the plate. In computational mechanics, contact algorithms have been
extensively studied by several authors. Details on contact algorithms can be found in
Belyshko et al. [3]. Classical implicit and explicit coupling are described in detail in Longatte
et al. [12], where hydrodynamic forces from the fluid solver are passed to the structure solver
for stress and displacement computation. In this paper, a coupling method based on penalty
contact algorithm is used. In penalty based contact, a contact force is computed proportional
to the penetration depth, the amount the constraint is violated, and a numerical stiffness
value. In an explicit FEM method, contact algorithms compute interface forces due to impact
of the structure on the fluid, these forces are applied to the fluid and structure nodes in
contact in order to prevent a node from passing through contact interface. In contact one
surface is designated as a slave surface, and the second as a master surface. The nodes lying
on both surfaces are also called slave and master nodes respectively. The penalty method
imposes a resisting force to the slave node, proportional to its penetration through the master

Table 1: Material data for water

Material Density (kg-m™) Dynamic Viscosity
Water 998 0.001

Table 2: Mie-Gruneisen Equation of state

Material S Speed of sound C (m/s)
water 1.2 1480
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Figure 5.1: SPH - FEM contact description

segment, as shown in Figure 4.1 describing the contact process. This force is applied to both
slave and nodes of the master segment in opposite directions to satisfy equilibrium. Penalty
coupling behaves like a spring system and penalty forces are calculated proportionally to the
penetration depth and spring stiffness. The head of the spring is attached to the structure or
slave node and the tail of the spring is attached to the master node within a fluid element that
is intercepted by the structure, as illustrated in Figure 4.1.

Similarly to penalty contact algorithm, the coupling force is described by (5.1):

F=k-d 5.1)

where k represents the spring stiffness, and d the penetration. The force F in Figure 4.1 is
applied to both master and slave nodes in opposite directions to satisfy force equilibrium at
the interface coupling, and thus the coupling is consistent with the fluid-structure interface
conditions namely the action-reaction principle.

The main difficulty in the contact algorithms comes from the evaluation of the stiffness
coefficient k in Eq. (5.2). The stiffness value is problem dependent, a good value for the
stiffness should reduce energy interface in order to satisfy total energy conservation, and
prevent fluid leakage through the structure. The value of the stiffness & is still a research topic
for explicit contact-impact algorithms in structural mechanics. In this paper, the stiffness
value is similar to the one used in Lagrangian explicit contact algorithms. The value of k is
given in term of the bulk modulus K of the fluid element in the coupling containing the slave
structure node, the volume V of the fluid element that contains the master fluid node, and the
average area A of the structure element connected to the structure node.

5.2. ALE MESH SENSITIVITY ANALYSIS FOR SPH METHOD
A detailed finite element model was developed to represent the sloshing problem. Before
conducting the simulation, mesh sensitivity tests were performed to compute sloshing
frequency of the finite element model for which analytical solution is available in the
literature. Three different mesh densities were used for mesh sensitivity tests from 20.000 to
60.0000 hexahedra elements for the fluid mesh. Simulation of the three finite element meshes
gives same results with good correlation experimental test results provided by Shao et al. [20].
The optimal model of 20.000 elements, shown in Figure 5.2, was taken as reference solution
for the ALE finite element simulation. In the simulation, the tank is modeled as rigid material
shearing common nodes with the fluid mesh at the fluid structure interface. Dimensions of the
rigid tank are presented in Figure 5.2, with a thickness of 1 mm.

For the SPH simulations, three different models have been used, the first model has a
number of particles similar to the number of nodes in the ALE model, which consists of
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<— Rigid tank
—  Void mesh
H=0.83m
h=0.50m
Water mesh

L=1.73 m

Figure 5.2: Problem description and ALE mesh

approximately 20.000 particles, the second model consists of 75.000 particles and the third
model with 120.000 particles with uniform mass, both SPH models for 20.000 and 75.000
particles are presented in Figure 5.3 and 5 4.

The tank is submitted to a horizontal velocity described in the paper by Sho et al. [20]
where experimental time history for the height of the waver for 10 seconds is provides. The
tank velocity in the horizontal direction is given by:

v(t) =0.032-cos(2- - t/T)

where 7 = 1.5 sec is the period of the horizontal velocity motion of the tank.

SPH Particles

Figure 5.3: Model with 20.000 SPH particles
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Figure 5.4: Model with 75.000 SPH particles

The amplitude of the water height at the tank wall are computed for ALE and SPH
simulations and compared to experimental data. Good correlation between ALE and
experimental results using identical parameters for the water and tank as shown in Table 3.

The first SPH simulation using 20.000 particles similar to ALE model, did not correlate
well with either ALE nor experimental results in term of the amplitude of the wave at the
tank interface. To improve SPH results and obtain good correlation with ALE model, finer
particle spacing needs to be performed for SPH simulation. SPH refinement can be
performed by decreasing particle pacing by a factor from two to four, which can be achieved
by increasing the number of SPH particles from 20.000 to 75.00 and 120.00 particles, where
both SPH discretizations of two SPH models are shown in Figures 5.3 and 5.4. By refining
the SPH model we achieved good correlations between SPH and ALE models in term of the
height of the water wave, Figure 5.11 shows time history of height of the water wave at the
structure. The price that need to be paid for efficiency of SPH method, is that the SPH
method may need larger number of particles to achieve an accuracy comparable with that of
a mesh based method.

Table 3: ALE and experimental data of peak wave amplitudes

High peaks ALE analysis Experimental results
first 021 m 0.22m
second 029 m 030 m

third 032 m 035m
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Figure 5.4: Water wave with ALE simulation at time t = 9.6 sec

Figure 5.5: Water wave with SPH attme t=9.6's

It is well known from design engineers and FEM analysts that experimental tests are
costly and take long time to perform. To reduce the number of experimental tests, numerical
simulations need to validated and then performed on different design product before setting
up a prototype. In order to validate the SPH technique described in the paper, the ALE
formulation can be used for validation, since ALE solution is accurate for times where the
mesh is deformed but not highly distorted, and has been validated for different applications.

The biggest advantage the SPH method has over ALE methods is that it avoids the heavy
tasks of re-meshing. For some complex fluid structure interaction simulations where
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Figure 5.6: Water wave with SPH attme t=6.8 s

0.3 ALE —»\

Y-disp

\J \V

Time

Figure 5.7: Water wave height for ALE and SPH simulations SPH1 = 20.000
SPH2 = 75.000 SPH3 = 120.000 particles

elements need to be eroded due to failure, the ALE remeshing method may fail, since a new
element connectivity needs to be regenerated. SPH method allows failure particles by
deactivating failed particles for the particle loop processing. This is a major advantage that
SPH method has over classical ALE and classical FEM methods.

To further improve the accuracy of the SPH method for the simulation of free surface and
impact problems, efficiency and usefulness of the two methods, often used in numerical
simulations, are compared.
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CONCLUSION

For structure integrity, several efforts have been made in automotive industry, for modeling
sloshing tank analysis and their effect on structures. In automotive and aerospace industries,
engineers and FEM analysts move their simulations from mesh based method to SPH method
to simulate water impact on deformable structure. We also observed in defense industry
where SPH method is recently used for undermine explosion problem and their impact on
the surrounding structure.

The biggest advantage the SPH method has over mesh based mesh methods is that it
avoids the heavy tasks of re-meshing for hydrodynamic problems or structural problems
with large deformation. The price to be paid for efficiency is that the SPH method may
need finer resolution to achieve accuracy comparable with that of a mesh based. As a
result, SPH simulation can be utilised by using finer particle spacing for applications
where mesh based method cannot be used because of remeshing problems due to high
mesh distortions. Since the ultimate objective is the design of a safer structure, numerical
simulations can be included in shape design optimization with shape optimal design
techniques (see Barras et al. [19]), and material optimization (see Gabrys et al. [18]). Once
simulations are validated by test results, it can be used as design tool for the improvement
of the system structure involved.
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