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ABSTRACT

Close-range blasts pose a threat through severe damage to structures

and injury or death. In this work, the spatial and temporal descriptions of a

localised blast load are presented using 6 non-dimensional parameters.

These are found to be solely functions of the charge stand-off distance to

diameter ratio for a cylindrically-shaped charge.

Numerical simulations of a localised blast are performed using

AUTODYN, where the pressure variation on a rigid barrier for various charge

stand-off/diameter combinations is obtained. The least-square regression

is then utilised to obtain the relationship between stand-off/diameter ratio

and dimensionless loading parameters. The relevant expressions and

dimensionless charts are presented.

The proposed equations are verified by comparing experimental data

with numerical results obtained by finite element analysis (FEA) of blast

loaded steel plates (using the user-defined subroutine VDLOAD

implemented in the FEA package ABAQUS/Explicit). Excellent correlation of

the measured permanent displacement with numerically predicted results

is obtained.

Keywords: Localised blast, non-dimensional parameters, AUTODYN,

ABAQUS/Explicit

NOMENCLATURE
Latin upper case
A explosive material constant [M L-1 T-2]
B explosive material constant [M L-1 T-2]
Cp gas specific heat at constant pressure, [L2 T-2 θ-1]
Cv gas specific heat at constant volume, [L T-2 θ-1]
De diameter of explosive, [L]
E0

e specific energy of explosive, [L2 T-2]
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H plate thickness, [L]
L plate length, [L]
P pressure, [M L-1 T-2]
P0 maximum overpressure, [M L-1 T-2]
Pa overpressure, [M L-1 T-2]
P(r, t) loading function, [M L-1 T-2]
Ps (r) spatial part of pressure pulse load, [M L-1 T-2]
Pt (t) temporal part of pressure pulse load, [M L-1 T-2]
Qe energy of explosion, [L2 T-2]
R0 radius of central uniformly-loaded region, [L]
R1 explosive material constant, [1]
R2 explosive material constant, [1]
Re radius of explosive, [L]
T gas temperature, [θ]
W plate width, [L]

Latin lower case
b loading parameter, [L-1]
d stand-off distance, [L]

fi functions of [1]

i non-dimensional impulse, [1]
me mass of explosive, [M]
r radial axis direction, [L]
td blast duration, [T]
w loading parameter, [T-1]
wf permanent transverse displacement, [L]

Greek upper case
Πi Buckingham’s dimensionless groups, [1]

Greek lower case
λ loaded radius ratio, [1]
λ0 uniformly-loaded radius ratio, [1]
ξq.l Jacob et al.’s loading parameter, [1]
ξq.S Jacob et al.’s stand-off parameter, [1]
ρ density of plate material, [M L-3]
ρa density of air, [M L-3]
ρe density of explosive, [M L-3]
ρp density of explosive product, [M L-3]
ϕq.S Jacob et al.’s damage parameter for quadrangular plates with stand-off

effect, [1]
σ0 yield stress, [M L-1 T-2]
ω explosive material constant, [1]

1. INTRODUCTION
Proximal blasts cause particular threats to both human life and to civil and military
infrastructure. The source of such blasts can be, for example, IEDs (improvised explosive
devices) and buried land mines exploding onto the underside of military vehicles. 
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Many researchers (e.g. [1–5]) have studied the response of structures to global 
(or uniform) blast loading. However, when blasts occur in close proximity of engineering
structures, the localised effect of the load gives rise to particular form of damage to the
structure which requires particular consideration, different from those of the case of global
blast loading [6]. 

1.1. LOCALISED BLAST LOADING
While there is no consensus on a unique universally accepted definition for “localised blast”,
researchers have proposed a few. Gharababaei et al. [7], for instance, define a localised blast
load as one where the stand-off distance is less than the radius of a circular plate whereas
Jacob et al. [8] attribute the localised nature to a blast load when the stand-off distance is less
than the radius of the explosive charge. The main concern of the engineer falls, anyway,
beyond the question of definition but the effects of such a load on engineering structures.
In fact, various researchers have investigated the effect of localised blast on a variety of
structural forms and material systems. 

Florence [9, 10] and Conroy [11], to mention a few, provide analytical expressions
describing the response of circular steel plates subjected to uniform localised loadings while
Lee and Wierzbicki [12, 13] studied particular forms of failure in steel plates under localised
blast loading. Qin [14] studied the response of sandwich and monolithic beams under
localised impulsive loading. 

In most engineering applications, structural elements can be geometrically classified
as being either beams or plates. Beams are members whose lengths are large when
compared to their (cross-sectional) sizes and whilst idealisation of frame structures into
beam elements is justified, many engineering structures can be more readily idealised as
being composed of plates. In fact, many researchers (e.g. [8, 15–18]) carried out
considerable work related to localised blasts on steel plates, including the influence of
stand-off on the response [8] and the effect of boundary conditions on plates subjected to
localised blast loading [18].

Langdon et al. [19–25] have extensively studied localised blast loading on fibre-metal-
laminates (FMLs), including studies on mathematical descriptions of a localised blast load [21].

1.2. NON-DIMENSIONALIZATION
Dimensionless parameters are a useful tool for scaling the effects of load and structural
response also to avoid unnecessary repetition of, for example, experiments in the space of
these dimensionless parameters. 

Various researchers have used non-dimensional parameters to study elastic and plastic
dynamic response of structures. An important number is Johnson’s damage number [26],
which describes the damage imparted by an impulsive velocity.

Zhao [27] and Li and Jones [28] extended Johnson’s damage number to define a response
number and applied it to various problems to define the response of plastic beams and plates
loaded dynamically. 

Li and Meng [29] developed dimensionless pressure-impulse diagrams which are pulse-
shape independent for various elastic-plastic SDOF systems while Fallah and Louca [30]
extended this work by considering hardening/softening responses.

However, dimensional analyses found in the literature typically deal with providing
expressions for the dynamic response of structures subjected to given loading, rather than
proposing expressions to describe the actual blast loading, given a set of threat parameters
corresponding to a real case. 
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1.3. AIM OF CURRENT WORK
Given the aforementioned gap in the literature, the objective of the present study is to
develop dimensionless expressions for a set of parameters which will define the variation of
a localised blast, both spatially and temporally. These parameters are functions of a set of
known loading inputs (viz. explosive type, charge mass, diameter and stand-off distance)
which defined the problem uniquely. The study will be limited to centrally-detonated charges
of a cylindrical shape whose height is relatively small when compared to its diameter. The
dimensionless parameters are then used to define a loading distribution on a structure such
that it can be easily input into commercial finite element packages for analysis. The results
from the exercise are validated by comparison with experimental results from blast load tests
on steel panels recently tested at the University of Cape Town.

2. NON-DIMENSIONALISED LOADING PARAMETERS
2.1. LOADING DESCRIPTION
In this work, it is assumed that a localised blast will be generated by means of a certain mass,
me, of explosive material, having a heat of explosion, Qe, having a shallow cylindrical form
of diameter, De, and which is acting at a stand-off distance, d. Thus, the parameters which
describe the load source are d, me, Qe and De. 

In general, an infinite series the terms of which are products of functions of space and
time can express any loading function. In most works of the literature, the series has been
truncated after the first term, and the localised blast loading function is assumed to be
composed of 2 independent parts (as proposed in e.g. [15, 18, 21, 31]) as follows:

                                                           P(r, t) = Ps(r) Pt(t)                                                      (1)

where Ps(r) is the spatial distribution given by:

                                                                                                  

(2)

and Pt(t) is the temporal distribution given by;

                                                                                                  

(3)

In this work, td is the duration of the positive phase of the blast (assuming a zero rise
time), P0 is a value of constant pressure acting over a central circular region of radius R0 and
b and w are exponential decay factors describing the variation of the spatial and temporal
functions respectively. Thus, the parameters which describe the loading profile completely
are R0, P0, td, b and w. 

It should be noted that Pa is not a further independent parameter, since Pa attaints the
value of P0 when the multiplier e-br is evaluated at r = R0. 

The loading distribution is shown in Figure 1.

2.2. NON-DIMENSIONALIZATION
A non-dimensionalization exercise is carried out employing Buckingham’s Π-theorem [32]
and the following non-dimensional groups are extracted:

                                                                                                                       

(4)
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(5)

                                                                                                                              
(6)

                                                                                                                             (7)

                                                                                                                              (8)

                                                                                                                              
(9)

Through some algebraic manipulation, is it found that the 5 unknown parameters R0, P0, td, 

a, b and w are all functions of as follows:
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Figure 1: Load spatial distribution, Ps (r)
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The ratio in this case can be compared with and shown to be related to the

traditional scaled distance expressed in the Hopkinson [33] and Cranz [34] scaling law, i.e.,

being dimensionless and derived solely based on

Buckingham’s Π-theorem without any empirical knowledge of blast phenomena, can be
thought of as a more theoretically sound scaling parameter than the Hopkinson-Cranz scaled
distance, since the dimensional analysis proposed in this work will also enable the derivation
of the spatial and temporal decaying functions describing the blast load.

The remaining task would thus be, to establish the functional dependence i.e. the form of

the functions fi in equations (10) to (14).

3. PARAMETRIC STUDIES USING AUTODYN

For the purpose of this study, the range of being considered is within the interval 

0.5 ≤ ≤ 6, which is deemed to be representative of practical loading scenarios which

can be described as being “localised”. This would correspond to threats placed at stand-off
distances in the range of 400 to 500 mm from IEDs of a range of diameters from 50 to 800 mm. 

A set of 12 models was compiled using AUTODYN v.13.0 [35], a hydrocode specifically
designed for non-linear dynamic analysis and routinely use to simulate blast loadings. A 2D
axially-symmetric model was set up representing a cylindrical space of 300 mm diameter and
500 mm height and meshed uniformly with an Eulerian mesh of uniform 1 mm size, which
was found to ensure numerical convergence. 

Flow-out boundary conditions were assigned to the curved face and the top (flat) face of
the cylindrical space while the other flat face was modelled as a rigid boundary.

3.1. AIR MODELLING
The space was filled with air using material data from the AUTODYN material library using
an “ideal gas” equation of state, described by:

                                                                                                          

(15)

where P is the gas pressure, ρa = 1.225 kg/m3 is the density of air, Cp = 1.005 kJ/kgK is the
specific heat at constant pressure, Cv = 0.7176 kJ/kgK is the specific heat at constant volume
and T = 288.2 K is the gas temperature. The internal energy was assigned as 2.068E5 kJ/kg. 

3.2. EXPLOSIVE MODELLING
The explosive charge was modelled as a 10 mm high cylindrical block of C4 (PE4) explosive
of constant diameter, De, of 50 mm and constant mass, me, of 31.4g. A detonation point was
placed in the centroid of the cylindrical charge. 
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The Jones-Wilkins-Lee (JWL) equation of state was used to describe the explosive’s
detonation behaviour:

                                                          

(16)

where P is the pressure, ρe = 1601 kg/m3 is the density of the explosive, ρp is the density of
the explosive product, E0

e = 5.621488E6 kJ/kg is the explosive’s specific internal energy and
A = 609.77 GPa, B = 12.95 GPa, R1 = 4.5, R2 = 1.4 and ω = 0.25 are empirically-derived
material constants.

3.3. MODELLING RESULTS
In each of the models, the stand-off distance was varied, from 25 mm to 300 mm in 25 mm
increments. In each case, the pressure value on the rigid face was monitored at 60 gauge
points placed at 5 mm intervals, as shown in Figure 2.

In each case, the detonation was numerically simulated and the event was modelled up to
2 ms, monitoring the pressure in the domain (e.g. Figure 3 to Figure 5) at the gauge points.

From each of the gauge points, the pressure-time histories were obtained. A selection of
these results from one of the models is shown in Figure 6.

For each model, the variation of pressure with space and time could be established,
assuming the relationships in (2) and (3). The curve fitting was done using built-in curve
fitting tool in MATLAB [36] and the parameters R0, P0, td, b and w were extracted. 
An example of the fits is shown in Figure 7 and Figure 8.
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Figure 3: Pressure distribution for 100 mm stand-off (left: 0.01 ms, right: 0.02 ms)

Figure 4: Pressure distribution for 100 mm stand-off (left: 0.03 ms, right: 0.04 ms)

Figure 5: Pressure distribution for 100 mm stand-off (left: 0.05 ms, right: 0.1 ms)
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Figure 6: Pressure-time history for 100 mm stand-off

Figure 7: Spatial load variation for 100 mm stand-off

Figure 8: Temporal load variation for 100 mm stand-off



4. LOADING PROFILE EQUATIONS AND CHARTS
Using the results obtained during the process outline in Section 3, a series of least-square
fitting exercises were carried out using the built-in curve fitting tool in MATLAB [36]. 

Thus, the functions fi in equations (10) to (14) were established as follows:

                                                                                                      

(17)

                                        

(18)

                                                                                                       
(19)

                                                            

(20)

                                                                                                      

(21)

These are shown graphically in Figure 9 to Figure 13.
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Figure 9: Non-dimensionalized constant pressure
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Figure 10: Non-dimensionalized duration

Figure 11: Non-dimensionalized temporal decay factor

Figure 12: Non-dimensionalized constant pressure radius



5. VARIATION OF IMPULSE WITH LOADING
Having established the form of the loading (spatial and temporal) distributions, a discussion
on the variation of impulse with the various loading parameters is presented hereunder.

From (1) and using (2) and (3), an expression for the impulse in terms of the loading
radius r could be written as:

                                                                                         

(22)

Considering a target of radius R and defining the ratio and substituting in
(22), then I(λ) could be written as:

(23)

The total impulse which a given charge could potentially deliver to the target would be
given by:

                      

(24)

Thus, a non-dimensional impulse, i, could be defined as the ratio of the impulse imparted
to a target to the total impulse which the threat generates:
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Figure 13: Non-dimensionalized spatial decay factor
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The variation of i with λ for λ ≥ λ0 (which is the typical case in most practical

applications) for various values of is shown graphically in

Figure 14 to Figure 17.
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It can be observed that, as increases, then for a given stand-off to charge diameter

ratio, i.e., the impulse imparted to the target decreases. Thus, it can be concluded that

the more significant threat scenario would be a small stand-off to charge diameter ratio,
rather than a large charge diameter to plate diameter ratio. 

It can also be seen that, for low values of there is little reduction in impulse

imparted with increasing charge stand-off and the amount of impulse imparted is reasonably 

high even for distant charges (e.g. for = 6). Thus, it can also

be concluded that a threat scenario comprising small charge diameter to target radius ratio
would be significantly detrimental to the target even for large stand-off to charge diameter
ratios.

6. CORRELATION OF NUMERICAL WITH 
EXPERIMENTAL DATA
The results derived in Section 4 were verified by comparing experimental test data with
numerical results which utilize the proposed model parameters.

6.1. TEST SETUP AND RESULTS
Laboratory testing of localised blast loading on steel plates was carried out at the Blast and
Impact Survivability Research Unit within the University of Cape Town in South Africa
using the ballistic pendulum setup therein (refer to e.g. [37] for details of setup). 3.8 mm
thick Armox 370T Class 1 armour steel sourced from SSAB of Sweden [38] fully-clamped
panels with an exposed area of 300 × 300 mm were subjected to a centrally-located disc of
PE4 (or C4) explosive, which was mounted on a polystyrene bridge to give a desired stand-
off distance. This arrangement has a long history of successful use and application of
laboratory-scale blasts tests on metallic (e.g. [15, 39–41]) and also composite and hybrid
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Figure 17: Variation of i with λ for De/R = 1
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systems (e.g. [19, 21, 25, 31, 37]). Whilst in the past solid polystyrene blocks have been
utilized as spacers to obtain a required stand-off, in this set of experiments a bridge
arrangement has been used, shown in Figure 18. In this way, the polystyrene does not
interfere with the overall blast phenomenon and there is no undesired enhancement of the
blast effects to a specific area. 

The tests are summarized in Table 1 and Figure 20.
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Figure 18: PE4 charge on underside of polystyrene bridge

Figure 19: Typical test panel in position

Table 1: Test results for Armox 370T Class 1

Test                 d (mm)                 De (mm)              me (g)                   I (Ns)†            wf (mm)
1                       25                           50                      40                        80.0                  29.5
2                       25                           50                      33                        66.1                  21.9
3                       50                           50                      40                        82.2                  14.4
4                       50                           50                      70                      143.2                  25.6
5                       38                           50                      40                      100.1                  21.3
6                       38                           50                      50                        80.5                  27.1
7                       38                           40                      40                        82.2                  17.6
8                       38                           40                      50                        91.0                  18.6

†Measured by means of ballistic pendulum at the University of Cape Town.



These results confirm the conclusions drawn from the theoretical analysis of Section 5,
since, for both materials, it can be observed that, for the same De value, the permanent
displacement is smaller as d increases and, for the same level of impulse and at a given stand-
off distance, the permanent displacement is higher for larger values of De.

However, in terms of the variation of permanent displacement with impulse, it was

observed there is a strong dependence on as evident from Figure 20.

6.2. DIMENSIONLESS RESULTS
Using the dimensionless damage number (or dimensionless impulse), ϕq, S, proposed by
Jacob et al. [8], this dependency is accounted for by means of a stand-off distance parameter
for quadrangular plates of dimensions L and W, thickness H, static yield stress σ0 and density
ρ, subjected to an impulse I resulting from a charge of radius Re, given by [16]:

                                                                                     

(26)

where ξl is a loading parameter given by:

                                                                                                                

(27)

and ξS is a stand-off distance parameter given by:

                                                                                                                  

(28)

The experimental results are now shown in terms of dimensionless quantities in Figure 21.
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Figure 20: Variation of permanent displacement with impulse for Armox 370T Class 1



It can be observed that all results, stand-off distance and charge diameter, can be described
by a single linear function which can be obtained by a least-squares fit analysis, falling
within a displacement/thickness ratio of ±1, given by:

                                                                                                              

(29)

6.3. NUMERICAL RESULTS
Having obtained a set of experimental data, the test scenarios were modelled in a commercial
finite element analysis package, defining the blast load by means of the function proposed in
(1) to (3).

For the various d, De and me values described in Table 1, the loading parameter values
were obtained from Figure 9 to Figure 13 or from equations (17) to (21). These loading
distributions were implemented in a user-defined loading subroutine (VDLOAD) in the
commercial finite element analysis package ABAQUS/Explicit v.6.9-1 [42] and applied onto
the plate surface. 

The plate itself was modelled using 8-noded linear brick elements with reduced
integration and hourglass control (C3D8R). Due to symmetry, a quarter plate was
modelled for computational efficiency and a uniform mesh size of 3 mm was used. This
was established by ensuring that there is numerical convergence and that the artificial
(hourglass) energy does not exceed ≈5% of the internal energy of the system. A typical
comparison of the energy levels, which is representative of all the numerical models, is
shown in Figure 22.

In terms of the material model, an elasto-plastic model was used for the armour steel,
using the elastic properties of an initial modulus of 202.5 GPa and a Poisson’s ratio of 0.33
and the plastic behaviour defined by using (true) stress-strain data obtained from tensile
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Figure 21: Variation of dimensionless displacement with dimensionless impulse
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testing carried out at the Department of Civil and Environmental Engineering of Imperial
College London, as shown in Figure 23.

A selection of the outputs from ABAQUS is shown in Figure 24 and Figure 25 and the
results are summarised in Table 2.

It can be seen that there is good correlation between the experimental and numerical
results, with a maximum difference of 11.9% and a mean difference of 8%. 

In addition to loading uncertainties, the discrepancy can be attributed to the
simplifications associated with the material model (i.e. ignoring rate effects) and also due to
difference in support conditions, i.e., between the (fully-clamped) model and the (bolted) test
plate.
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Figure 22: Energy comparison from ABAQUS (test 2)

Figure 23: Stress-strain curve for Armox 370T Class 1
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Figure 24: Mises stress (left) and displacement (right) contour plots for test 3

Figure 25: Mises stress (left) and displacement (right) contour plots for test 7

Table 2: Comparison between
experimental and numerical results

Test                              wf (mm)

                Experimental        Numerical
1                     29.5                      26.0
2                     21.9                      20.5
3                     14.4                      13.0
4                     25.6                      23.0
5                     21.3                      18.0
6                     27.1                      25.5
7                     17.6                      19.0
8                     18.6                      23.5



7. DISCUSSION AND CONCLUSIONS
In this work, a generalized form of spatial and temporal description of a localised blast load
is presented. It is postulated that the two parts (spatial and temporal) are independent, an
assumption supported by AUTODYN simulations. Assuming that the explosive charge is
cylindrical in shape and that its height is not too large when compared to its diameter, a non-
dimensionalization exercise is carried out, through which 6 dimensionless parameters which
uniquely describe the load are extracted. These are all found to be a function of the ratio of
the charge stand-off distance to the charge diameter.

A number of numerical simulations using AUTODYN were carried out, in which the
pressure variation on a rigid barrier for various charge stand-off/diameter ratio combinations
and the temporal and spatial variations are obtained for each case.

It should be noted that the relationships are obtained based on the assumption that the load
is applied on a rigid barrier and ignoring the flexibility of the loaded structure. In effect, the
structure would deform as it is loaded, making the results obtained through this method an
upper bound to the exact solution. The accuracy of the method, nonetheless, is tested via
corroboration of test results with subsequent simulations.

Least-square regression is performed to obtain the relationship between stand-
off/diameter ratio and the various loading parameters and dimensionless charts for each of
these parameters are produced.

The proposed method is verified by comparing experimental data with numerical models
of a blast load on steel plates using ABAQUS/Explicit and modelling the load via a user-
defined loading subroutine (VDLOAD) and utilizing the loading parameters obtained from
the charts.

From the results obtained in Section 6.3, it is clear that the proposed method accurately
describes localised blast loads and can be used to simulate the response of structures in finite
element packages, such as ABAQUS/Explicit, and also to obtain analytical results using
exact solutions where these exist. The proposed and investigated model was further used to
study numerous similar cases and led to successful results in each case [43–46].

A final remark on the generality of the proposed method seems in order. It must be noted
that while the proposed method can be applied for alternative charge geometries (e.g.
spherical), the derived constants are only valid for cylindrical charges with a detonation point
placed in the centre of the charge and where the cylinder’s height is small when compared to
its diameter (not exceeding 0.3). It is known that the influence of the charge height to its
diameter could influence the spatial distribution and pressure magnitudes of a close-in blast
and any scenarios outside those considered in this study would need further investigation.
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