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ABSTRACT

An explicit numerical-analytical method is demonstrated for accurate

solving the Schrödinger equation in those cases when this equation

reducible to a system of n coupled ordinary differential equations with

singular points. Fundamental system of solutions is constructed as

algebraic combinations of power series, power functions and logarithmic

function in the neighbourhood of the regular singular point and as

asymptotic expansions of solutions in the neighbourhood of the irregular

singular point. The method is based on the calculation of recurrent

sequences of constant matrices of coefficients in power series and in

inverse power series in asymptotic expansions using derived recurrent

relations, that makes possible to calculate solutions at any given point using

only algebraic computations and elementary functions. In turn it makes

possible to solve accurately the eigenvalue problem and scattering

problem and to derive analytical expressions for the wavefunctions. The

method is applied to calculations of energies and wavefunctions of the

discrete spectrum and wave functions of the continuous spectrum of the

hydrogen-like atoms and of acceptors in semiconductors.

Keywords: numerical methods, Coulomb potential, ordinary differential

equations, singular points, recurrent sequences, eigenvalue problem,

scattering problem

1. INTRODUCTION
We consider the Schrӧdinger equation 

                                                                                                                  (1)

where the Hamiltonian H is a quadratic form of the momentum, in those cases when Eq. (1)
is reducible to a system of n coupled ordinary differential equations with singular points.
Hamiltonian H can be represented in the following form:

                                                                                              

(2)

where p = -i∇ is a momentum operator ( = 1), are the components of the irreducible

spherical tensor operator of the second rank [1] composed of the components of the
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symmetric tensor and A, Bm are constant n × n matrices. We suppose that

V(r) is the Coulomb potential. Using the expansion of the wavefunction Ψ(z) in the complete
basis functions of angular variables or if necessary the functions of angular and spin
variables, such as functions in the L-S coupling scheme (see [2], and the references cited
therein) it is possible to reduce (1) to a system of n coupled radial equations:

                                                                 
(3)

where w, p0 and qi are constant n × n matrices, R = (RLτ) is an n-dimensional column-
function, L is a quantum number of the orbital angular momentum operator L = r × p, τ is a
set of some quantum numbers chosen in accordance with a Hamiltonian symmetry.
Hermitian character of the Hamiltonian imposes the following conditions on the matrices of
coefficients: w = w* > 0 (this matrix is proportional to the inverse masses matrix),

, , .

There are two singular points of Eq. (3): the regular singular point r = 0 and irregular
singular point r = ∞. Eq. (3) describes Coulomb states of a particle (or of two attractive
particles, i.e. of exciton) in various systems. In case n = 1 these are states of a hydrogen-like
atom, if n > 1 (3) describes states of, e.g., a shallow acceptor impurity or exciton in
semiconductors in different approximations. 

Using the substitution we reduce the system of n second-order

equations (3) to a system of 2n first order equations:

                                           
,

                                      
(4)

It is obvious now that r = 0 is the regular singular point (by definition). Here

                        

, ,

are 2n × 2n matrices, ,

The methods of construction of the fundamental system of solutions of Eq. (4) in the
neighbourhood of the regular singularity r = 0 and solving the singular eigenvalue problem
and the scattering problem, that are based on the recurrent sequences procedure were
developed in [3, 2] in general case, i.e. when a(r) in (4) is an arbitrary holomorphic at the
point r = 0 N × N matrix function. In the present paper we derive solutions of (3) in the
neighbourhood of the irregular singularity r = ∞ in general case of arbitrary n using a method
specifically pertinent in case of Eq. (3) (section 2), and study particular problems (n = 1, 2
in (4)), i.e. derive solutions of (3) and solve the eigenvalue problem and related problems
both in the case when exact analytical solutions are known, that makes possible to estimate
the accuracy of the method, and in cases when only numerical methods are applicable
(sections 3, 4). Note that the method based on the use of recurrent sequences of constant
coefficients allows us to compute the solution at any given point, using only simple algebraic
computations and elementary functions, without the use of any step-by-step procedures.
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2. SOLUTIONS IN THE NEIGHBOURHOOD OF THE
IRREGULAR SINGULARITY r = ∞∞
In order to construct the fundamental system of solutions R(r) of Eq. (3) in the
neighbourhood of the irregular singularity r = ∞ we derive asymptotic expansions of the
functions at r → ∞. We reduce the system of equations (3) to a system of first

order equations using the substitution :

                                                                    (5) 

where

                          

, ,

                    

(6)

To analyse the structure of the 2n × 2n matrix β0 whose form determines the behaviour of
the solutions of (5) at r → ∞ we consider the following eigenvalue problem

                                                                                                                 

where ξ, η are n-dimensional vectors, and we obtain from (6)

                                                         η = λξ; -Q2ξ = λ2ξ. 

Note that the matrix Q2 is similar to a Hermitian matrix, i.e. its eigenvalues are real, and
eigenvectors form complete system in the n-dimensional space. We suppose henceforth that
there are n+ positive and n- negative eigenvalues of the matrix Q2 (n = n+ + n-), and there are
no multiple ones among them. Thus the matrix Q2 is similar to the diagonal matrix 

. Hence β0 is a plain matrix, its eigenvalues are 2n unlike numbers:

and eigenvectors are of the form

                                    

Obviously these eigenvectors form complete system in the n-dimensional space. 
We perform the following substitution:

                                             
,

                                       (7)
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Then Eq. (5) assumes the form

                                                                                                        
(8)

The asymptotic expansion of solutions of Eq. (8) Z(r) at r → ∞ is of the form (see [4]):

                                                              

(9)

C in Eq. (9) is an arbitrary 2n-dimensional vector, Rk and Dk are 2n × 2n matrices, and the

following relations are valid: 1) ; 2) ; 3) ;

4) . Constant matrices Rk, Dk, k ≥ 1 (recurrent sequences) satisfy the

following recurrent relations:

                                                
(10)

It is easy to compute all required components , , and using the fact that
Bo is a diagonal matrix with unlike eigenvalues. 

3. THE CASE OF A HYDROGEN-LIKE ATOM
The following radial equation (Eq. (3), n = 1) is considered,

                                                                       
(11)

where L is the quantum number of the orbital angular momentum, a is an integer (α = 1
corresponds to the Coulomb attraction in a hydrogen atom), RL(r) is a Coulomb radial
wavefunction, E is the energy. Generally speaking, distances and the energy are measured in
the units of (effective Bohr radius) and (effective

Rydberg constant) respectively, where e – electron charge, m – electron effective mass or
reduced mass in case of two attractive particles (exciton), κ – static dielectric constant.

Note that this equation describes the states of a hydrogen atom or hydrogen-like donor
impurities in the direct-gap semiconductors.

3.1. FUNDAMENTAL SYSTEM OF SOLUTIONS
The neighbourhood of the regular singular point r = 0. 

The regular solution of Eq. (11) is of the form

                                                                                                                
(12)

where coefficients an satisfy the following recurrent relation
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aL is an arbitrary constant C that is determined by normalization. 
The second, irregular solution of Eq. (11) assumes the form:

                                                                                            
(14)

Here is the solution (12) with a coefficient aL : 

                                                         

Coefficients bn satisfy the recurrent relation:

                                                            
(15)

Coefficient bL is an arbitrary number and we set bL = 0 that results in the proportionality
of al and D. The value D is determined by normalization. 

As follows from the results of [3], power series in (12), (14) converges uniformly in the
whole interval (0, ∞) and are linear-independent solutions of Eq. (3). It is clear

that to calculate radial wavefunctions with any given accuracy at an arbitrary point
, it is sufficient to take into account only a finite number N in the power series.

The value of N is limited only by the computer resources and round-off errors in the process
of computations. 

The neighbourhood of the irregular singular singular point r = ∞.
As it follows from the results of section 3, the asymptotic expansions of the function 

fL (r) = r · RL(r) and its derivative at r → ∞ are as follows
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Matrix recurrent sequences Pn and Bn are determined by the following recurrent relations 
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Matrices Bn are diagonal , B0 = A0, , (Pn)ii = 0, n ≥ 1, and
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3.2. THE MATCHING OF THE SOLUTIONS. EIGENVALUE PROBLEM
The conventional eigenvalue problem for Eq. (11) is in the following: one should find
such value of the energy E: E < 0 (eigenvalue) that the solution RL (r) is finite at r = 0
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and RL (r) → 0 at r → ∞, one should find also the wavefunction corresponding to this value
of E and normalized by the condition (eigenfunction):

                                                                                                                 
(19)

To solve the problem it is necessary to perform matching at some intermediate point 
r = ȓ, 0 < ȓ < ∞ of a function ( is the regular at r = 0 solution (12)) and

its derivative (the “left” solution) with a “right” solution that tends to zero as r → ∞ and its

derivative (defined by (16) – (18) with i = 2). We designate by a column composed of

the values that take the “left” solution and its derivative when aL = 1 (13) at the point 

r = ȓ at some given E, and by - a column composed of the “right” solution and its

derivative when С2 = 1. We define a matrix 

                                                                                                         

To complete the matching it is necessary to ensure compliance with the following
equation:

                                                                                  

(20)

Thus the procedure of calculating some eigenvalue E = E0 is reduced to the numerical
solution of the equation 

                                                                                                                      (21)

Then, after finding the eigenvalue E0 and using (20), (19) one determines values 
of constants C2(E0) and al(E0) and thus completely determines eigenfunction and its
derivative on (0, ∞). 

In order to estimate the accuracy of the computations the energies and wavefunctions of
a few lowest bound states of a hydrogen atom were calculated. In this case exact analytical
solutions of the problem are well-known (see e.g. [5], [6]). Eigen energies equal:

Eigenfunctions (radial wavefunctions) of two lowest states with

L = 0 are of the form: (the first index is the principal

quantum number n, the second is L). Calculated values are close to exact ones with high
accuracy. In particular, in case of above mentioned states 14 significant digits in calculated
eigenvalues and 12 in the eigenfunctions coincide with the exact ones. 

Eigenvalue problem in the case of a finite interval. 

In this case the eigenvalue problem for Eq. (11) on a finite interval is in the

following: one should find such value of the energy E that the solution RL(r) is finite
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at r = 0 and , one should find also the wavefunction corresponding to this value

of E and normalized by the condition: 

                                                                                                                
(22)

Note that the problem (in the simplest model) about states of a hydrogen-like donor
impurity, located in the center of a semiconductor spherical quantum dot of the radius r0

(see e.g. [7]) is reduced to this one. 
The problem should be solved numerically since analytical solutions can be found only in

the cases when the value r0 coincides with the position of a node of some wavefunction of
the problem at the semi-infinite interval [7]. In the present case the problem of finding of
eigenvalues is reduced to the numerical solving of the equation

                                                                                                             
(23)

where is the regular solution (12). Note that index n in this notation corresponds

to the one in the notation of the solution of the problem at semi-infinite interval (i.e. when 
r0 → ∞). For definiteness we set aL = 1 in (12). After finding some eigenvalue E = E0 and

implementation of integration (22) one has an expression (12) with for a
normalized solution, where

                                                                                              
(24)

Some results of calculations are demonstrated in Table 1. Here indices in the notation of
the energy E = Еnl correspond to those in the notation Rnl (r). 
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Table 1: The dependence of the energies of the lowest three
Coulomb states of the radius r0

r0                           E1, 0                                E2, 0                            E2, 1
∞                     -1                                       -0.25                        -0.25
15                    -0.9999999998                  -0.2490                   -0.2495
10                    -0.999998                          -0.2256                    -0.2377
9                    -0.999991                          -0.2057                    -0.2275
8                    -0.99995                            -0.1695                    -0.2089
7                    -0.9997                              -0.1025                    -0.1750
6                    -0.9986                                0.0255                    -0.1111
5                    -0.9928                                0.2825                      0.01520
4                    -0.9665                                0.8405                      0.2871
3                    -0.8479                                2.223                        0.9625
2                    -0.2500                                6.655                        3.152

1, 8                    0.06510                              8.622                        4.131
1, 6                    0.5426                              11.42                          5.530
1, 4                    1.294                                15.59                          7.614
1, 2                    2.539                                22.12                        10.89
1                      4.748                                33.14                        16.45



In particular it can be seen from the table that at finite r0 energy level is no longer
corresponds to the number n (principal quantum number): accidental (Coulomb) degeneracy
of the states with n = 2, L = 0, 1 is removed.

As it was mentioned above the exact analytical solution can be found in the case when the
value of r0 coincides with the position of a node of some wavefunction of the problem at the
semi-infinite interval. It can be seen from the table that at r0 = 2 the computed lowest
eigenvalue (ground state energy) equals E10 = –0.25 (with high accuracy, i.e. 12 zeroes after 5).
To this value corresponds the solution of the problem at the semi-

infinite interval, which has a node at r = 2. It means that this function is the eigenfunction of

the problem on the finite interval which is normalized according to (22) if we set ,

where . One can estimate the accuracy of the method in particular comparing

the value of Q computed using Eq. (24): Q = 0.105306034687423, and using exact formula:
= 0.105306034687422. 14 significant digits in computed values of the

eigenfunction coincide with the exact ones at all 0 < r < 2.

Eigenvalue problem in the case of the hard core potential with a Coulomb tail.
Models that use the hard core potential are considered in various applications, and

methods of solving problems of quantum mechanics in the presence of this potential are of
special interest (see e.g. [8]). A model of the hard core potential with a Coulomb tail may be
useful to describe the shallow states of the bound multiexciton complexes in semiconductors.

The following eigenvalue problem for Eq. (11) is considered: one should find such value
of the energy E: E < 0 that the solution RL(r) = 0 at r ≤ rHC (rHC is a radius of the hard core
potential) and RL(r) → 0 at r → ∞, one should find also the wavefunction corresponding to this
eigenvalue and normalized by the condition:

                                                                                                                
(25)

To solve this problem it is necessary to find the coefficient M = M(E) in a linear
combination of regular (12) and irregular (14) solutions for which the following condition is
satisfied: 

                                                           
(26)

Then it is necessary to perform matching of a function where is the

“left” solution, and its derivative with the “right” solution and its derivative (see (20)) at

some intermediate point r = ȓ, then calculate an eigenvalue by the numerical

solution of Eq. (21) and find the wavefunction, given the condition (25). 
Some results of the calculations are presented in Figures 1 and 2. 

4. COULOMB HOLE STATES
Coulomb hole states, such as the states of shallow acceptors or excitons in semiconductors
with degenerate valence bands, are described by the Luttinger Hamiltonian [9]. Within the
so-called spherical approximation [10] Luttinger Hamiltonian can be written as [10, 11]
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Here p is the momentum operator; P2 and J2 are irreducible spherical tensor operators of
the second rank [1] derived from the components of p and vector J representing the

pseudospin angular momentum with where γi are empirical

constants – Luttinger parameters of the valence band [9]; the energy and distances are 
measured in units of and respectively, m0 is the mass

J
3

2
; (6 4 ) / 5 ,3 2 1μ γ γ γ= = +

 κ γ=R m e / 2a 0
4 2 2

1  κγ=a m e/2
1 0

2
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Figure 1: The wavefunction of the ground state in the case of the radius of the hard
core potential rHC = 0.4 (L = 0, E = -0.5320)

Figure 2: Dependence of the ground state energy of the radius of the hard core
potential



of a free electron, κ is the static dielectric constant. Hamiltonian (28) is spherically
symmetric in the coupled orbital and spin spaces and the total angular momentum F = L + J
is a constant of motion. Wavefunctions can be written as [11]:

                               

where |LJFFZ〉 are functions in the L-J coupling scheme [1, 10],

The functions fh(r), fl(r) are expressed using the components of a solution of Eq. (3)

Eq. (3) is reduced

to a set of systems of equations of the same form (n = 2), with instead of R, with

diagonal matrices w, q1, q2: w = diag (1 - μ, 1 + μ), q1 = 2, q2 = E and with an anti-diagonal.
matrix p0. Explicit expressions for the matrices p0 and q0 in (3) are presented in [11]. Each
system of equations (3) and each state corresponds to a certain value of the total angular
momentum F (half-integer) and parity P = (-1)L. Note that in the present case Eq. (3)
describes a coupling of states of two particles with different masses, i.e. 1/(1 - μ) (heavy
hole) and 1/(1 – μ) (light hole), by the Coulomb potential. 

Two regular at r = 0 exact solutions of (3) (“left” solutions) are of the form

                                                            

(28)

where ρ1 = L + 3, ρ2 = L + 1 and recurrent sequences and a constant K are found from
the recurrent relations:

                      

                

(29)

Here Γk(ρ) is a sequence of the matrices:
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.

To derive all “right” solutions, i.e. asymptotic expansions of solutions at r → ∞ we use
the method of Section 2 and reduce (3) to a system of 4 first-order equations (8) using the
substitution 

                                

(30)

B0 in (8) is a diagonal matrix: B0 = diag (λh, - λh, λl, -λl), and the asymptotic expansion
of Z is

                                                              
(31)

Here C is an arbitrary column of 4 constant elements. Recurrent sequences Rk and Dk are
given by the recurrent relations (10).

Derived expressions (28–31) determine “left” solutions of Eq. (3) and all four “right”
solutions. As follows from the results of [3], power series in the expressions for f (1), f (2), f (3)

and f (4) converges uniformly in the whole interval (0, ∞) and these solutions form a
fundamental matrix of solutions of Eq. (3).

In order to solve the eigenvalue problem it is necessary to perform matching at some
intermediate point r = ȓ, 0 < ȓ < ∞ of a linear combination of two regular “left” solutions (28)
and their derivatives with a linear combination of two “right” solutions that tend to zero as 
r → ∞ and their derivatives, i.e. those solutions (30), (31) that correspond to the eigenvalues 
-λh and -λl of the matrix B0. Using the condition of non-trivial consistency of the resulting
system of linear homogeneous algebraic equations we find the energy levels (see (21)). Then
we compute the normalized wavefunctions as in subsection 3.2. In this case the

normalization condition has the form: .

In order to calculate wavefunctions of the continuous spectrum of the Hamiltonian (27) it
is necessary to match a linear combination of two regular “left” solutions (28) (and the
derivatives) with a linear combination of four “right” solutions (30), (31) (E > 0 in this case)
at some intermediate point r = ȓ, 0 < ȓ < ∞. We choose two linear combinations of “right”
solutions that give the heavy-hole and the light-hole radial in-solutions, whose asymptotic
behaviour at r → ∞ are
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(we have omitted the logarithmic phase in exponents for brevity). Here
are elements of the partial S-matrix corresponding to a given value

F of the total angular momentum and parity P. This matrix is symmetric and unitary. 

In the present study the method is used to calculate energy and wavefunction of the
ground state (F = 3/2, P = 1) and the wavefunctions of states of the continuous spectrum
(with F = 1/2, 3/2, 5/2 and P = -1) as functions of the energy E > 0 for different values of 
μ, i.e. for a shallow acceptor impurity in different semiconductors. The dipole optical
transitions of a hole from the ground state of an acceptor are allowed only to these states of
the continuous spectrum and thus it is possible to calculate the spectra of the photoionization
cross-section of shallow acceptors in semiconductors. The choice of the wavefunctions of the
continuous spectrum, asymptotic behaviour of which is described by (32) and corresponds
to the scattering problem, makes it possible to calculate the partial photoionization cross
sections that correspond to “creation” of separately a heavy and light hole in the valence
band. Using the calculated values of energies and wave functions, as well as the explicit
expression for the photoionization cross section of a shallow acceptor, see [11], we
calculated the spectra of the photoionization cross section for shallow acceptors in various
semiconductors (i.e. for different values of μ). Results of calculations are presented in
Figures 3 and 4. In the caption of Figure 3 EGS is the calculated values of the energy of the
ground state (values of material parameters see in [10]). The value μ = 0.236 corresponds to
the direct exciton in GaAs. Note that as is evident from Figures 3 and 4 for values of μ close
to 1, i.e., for large values of the effective mass of the heavy hole, spectrum of photoionization
cross section differs greatly from this spectrum for hydrogen-like atom (μ = 0). 

α βS ,k E( / (1 )) ,h l,
1/2∓ μ=
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Figure 3: Spectra of the photoionization cross section of shallow acceptors in

semiconductors. σ is in units of 1 - μ = 0.907 (InAs, EGS = -5.098),

2 - μ = 0.766 (Ge, EGS = -2.264), 3 - μ = 0.6 (ZnTe, EGS = -1.503), 4 - μ = 0.236

(EGS = -1.053).

3
.

/

e
ck

a


σ
π

=
4

0

2

1 2
2



5. CONCLUSIONS
A numerical-analytical method with some applications were demonstrated for accurate
solving the Schrӧdinger equation in those cases when it is reducible to a system of n
coupled ordinary differential equations with singular points. Fundamental system of
solutions is constructed as algebraic combinations of power series, power functions and
logarithmic function in the neighbourhood of the regular singularity (“left” exact
solutions), and as asymptotic expansions of solutions in the neighbourhood of the
irregular singularity (“right” solutions). In the framework of the method, in order to solve
the eigenvalue problem and the scattering problem it is necessary to perform matching of
a proper linear combination of “left” solutions and their derivatives with a proper linear
combination of “right” solutions and their derivatives at some intermediate point r = ȓ, 0
< ȓ < ∞. The method is based on the calculation of recurrent sequences of the constant
matrices of coefficients in the power series and in the inverse power series in the
asymptotic expansions using derived recurrent relations, that makes possible to calculate
solutions at any point r, 0 < r < ∞ using only the simple algebraic computations without
usage of any conventional step-by-step or variational procedures. In turn, it makes
possible to solve accurately both the eigenvalue problem and the scattering problem and
to derive analytical expressions for the wavefunctions. The method is used for
calculations of states of the discrete spectrum of a hydrogen-like atom and of a shallow
acceptor impurity in semiconductors, states of the continuous spectrum of an acceptor in
the statement corresponding to the scattering problem, and the spectra of the
photoionization cross section of shallow acceptors in various semiconductors. In
conclusion we note that, as is obvious, use of recurrent sequences of coefficients in the
power series makes it possible to efficiently and accurately solve the Schrödinger
equation in cases where it is reduced to the ODE without regular singular point (see, e.g.,
[12]–[15]).
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Figure 4: Partial spectra of the photoionization cross section. 1 - σ1, 2 - σh 

(μ = 0.907); 3 - σ1, 4 - σh(μ = 0.236). Units are the same as in Figure 3. 
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