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ABSTRACT
The present work concerns solving Noise, Vibration and Harshness (NVH)
and fatigue based on Power Spectrum Density (PSD) analysis of a landing
gear’s leg for an Un-Manned Aerial Vehicle (UAV). This analysis includes
random vibration and high-cycle fatigue analysis in a random vibration
environment.

In this analysis, the cumulative damage ratio is computed using material
S-N (Stress-Number of cycles) fatigue curve. Dirlik method is used for the
analysis of lifetime as it is proven to provide accurate results for large
number of applications, both in automotive and aerospace industry. It is
also compared to other methods that have been developed in LS-DYNA®
as well. The input acceleration PSD data are provided through
measurements.

The obtained analysis results shows that although the landing gear
design is safe according to dynamic and static load, its service life is about
3037 hours due to random vibration effect.
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1. INTRODUCTION

Most real fatigue loadings are random processes in respect of frequency and stress
amplitude. Estimating fatigue damage with Power Spectrum Density (PSD) was first
proposed by Rice [1] in 1954. The stress power spectra density (PSD) represents the
frequency domain approach input into the fatigue. This is a scalar function that describes
how the power of the time signal is distributed among frequencies [2]. Mathematically this
function can be obtained by using a Fourier transform of the stress time history’s
autocorrelation function, and its area represents the signal’s standard deviation. It is clear that
PSD is the most complete and concise representation of a random process [3]. Finite element
analysis is very efficient in taking the PSD of applied loads and determining the PSD of the
resulting stresses at various points in the structure. A method of taking the PSD of stress and
calculating fatigue lives therefore has attractions. Much of the early work on fatigue analysis
from PSD’s was carried out by NASA in order to determine the fatigue damage caused by
vibration and buffeting of space vehicles.
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2. RANDOM RESPONS ANALYSIS

Random response linear dynamic analysis is used to predict the response of a structure
subjected to a nondeterministic continuous excitation that is expressed in a statistical sense
by a cross-spectral density (CSD) matrix. The random response procedure uses the set of
eigenmodes extracted in a previous eigenfrequency step to calculate the corresponding
power spectral densities (PSD) of response variables (stresses, strains, displacements, etc.)
and, hence —if required —the variance and root mean square values of these same variables.
This chapter provides brief definitions and explanations of the terms used in this type of
analysis based in the book by Clogh and Penzien [4].

Examples of random response analysis are the study of the response of an airplane to
turbulence; the response of a car to road surface imperfections; the response of a structure to
noise, such as the “jet noise” emitted by a jet engine; and the response of a building to an
earthquake.

Since the loading is nondeterministic, it can be characterized only in a statistical sense.
We need some assumptions to make this characterization possible. Although the excitation
varies in time, in some sense it must be stationary —its statistical properties must not vary
with time. Thus, if x(7) is the variable being considered (such as the height of the road surface
in the case of a car driving down a rough road), then any statistical function of x, f{x), must
have the same value regardless of what time origin we use to compute f:

f(x(t)):f(x(t+r)) for any T (1

We also need the excitation to be ergodic. This term means that, if we take several samples
of the excitation, the time average of each sample is the same. These restrictions ensure that
the excitation is, statistically, constant.

The following subchapters explain some concepts used in random response analysis.

2.1. STATISTICAL MEASURES
The mean value of a random variable x(7) is:

E(x)=tlim L [ 2 x(n)a. @)

T—e T )

Since the dynamic response is computed about a static equilibrium configuration, the
mean value of any dynamic input or response variable will always be zero:

E(x)=0. 3

The variance of a random variable measures the average square difference between the
point value of the variable and its mean:

o ()= imr ' (s () o @

Since E(x) = 0 for our applications, the variance is the same as the mean square value:

2 1t 2
E(x*)=lim [3 (@0)ar. )
2

The units of variance are (amplitude)?, and are expressed as root mean square (RMS)
values:

o, (x)=4o’. (6)
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2.2. CORRELATION

Correlation measures the similarity between two variables. Thus, the cross-correlation between

two random functions is the integration of the product of the two variables, with one of them shifted

in time by some fixed value to allow for the possibility that they are similar but shifted in time.
The cross-correlation function for the variables is defined as:

R (0)=lim L[5 x () e)ar ™
2
Since the mean value of any variable is zero, on average each variable has equal positive
and negative content. If the variables are quite similar, their cross-correlation for some values
of (1) will be large; if they are not similar, the product x,x, will sometimes be negative and
sometimes positive so that the integral over all time will provide a much smaller value,
regardless of the choice of 1. A simple result is:

RX|X2 (T) = szzq (_T) * (8)

The autocorrelation is the cross-correlation of a variable with itself. Then the
autocorrelation of a variable x(7) is defined as:

=lim — f x(t+7)dt. 9)

T—)ea

Clearly,as T =0, R (T) —0 rz , the autocorrelation equals the variance (the mean square
value).

The autocorrelation, R(t) tells us about the nature of the random variable. If R(7) drops off
rapidly as the time shift t moves away from z = 0, the variable has a broad frequency content;
if it drops off more slowly and exhibits a cosine profile, the variable has a narrow frequency
content centered around the frequency corresponding to the periodicity of R(z).

This concept is extended to detect the frequency content of a random variable by cross-
correlating the variable with a sine wave: sweeping the wave over a range of frequencies and
examining the cross-correlation tells us whether the random variable is dominated by
oscillation at particular frequencies. We begin to see that the nature of stationary, ergodic
random processes is best understood by examining them in the frequency domain.

We can write x(#), which contains many discrete frequencies in terms of a Fourier series
expanded in N steps of a fundame{\rlltal frequency w:

x(r)= z [a, cos(inw,t)+b, sin(inw,t)]

n=1

(10)

Keeping in mind that we will be interested only in the real part, the variance of x(#) can
be expressed as:

ol (x )—;1m - J Z A exp(=ino,t)A,exp (inw,t)dt. (11)
2 n=-N
Where A, is the complex amplitude of the nth term, 4" is the complex conjugate of A, .
Using the orthogonahty of Fourier terms. Contmumg

ol (x )—hm—_[ ZA A, dt

r

L N (12)
=D AA =D |4, Zau>
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where x, is the nth component of the Fourier series.
The contribution to the variance of x, & (x), at the frequency f, =nw, /(27), per unit
frequency, is thus:

2r %
0
since we are stepping up the frequency range in steps of Af =@, /(2). The variance can,
therefore, be written as:

ot (x)= 35, (f)A

n=—N

(14)

As we examine x as a function of frequency, S, (f,) tells us the amount of “power” (in the
sense of mean square value) contained in x, per unit frequency, at the frequency f . As we
consider smaller and smaller intervals, Af — 0, S is the power spectral density (PSD) of the
variable x:

O'f(X)=J:Sx(f)df- (15)

2.3. RANDOM RESPONSE ANALYSIS

For a system excited by some random loads or prescribed base motions, which are
characterized in the frequency domain by a matrix of cross-spectral density functions, S,
(), we can think of N and M as two of the degrees of freedom of the finite element model
that are exposed to the random loads or prescribed base motions. In typical applications the
range of frequencies will be limited to those to which we know the structure will respond —
we do not need to consider frequencies that are higher than the modes in which we expect
the structure to respond.

The values of S, (f) might be provided by Fourier transformation of the cross-
correlation of time records or by the Fourier transformation of the autocorrelation of a
single time record, together with known geometric data. The system will respond to this
excitation. We are usually interested in looking at the power spectral densities of the
usual response variables—stress, displacement, etc. The PSD history of any particular
variable will tell us the frequencies at which the system is most excited by the random
loading.

An overall picture is provided by looking at the variance (the mean square value) of
any variable; the RMS value is provided for this purpose. The RMS value is used instead
of variance because it has the same units as the variable itself. It is computed by
integrating the single-sided power spectral density of the variable, S = over the frequency
range.

The transformation of the problem into the frequency domain inherently assumes that the
system under study is responding linearly.

2.4. THE FREQUENCY RESPONSE FUNCTION (FRF)

Random response is studied in the frequency domain. Therefore, we need the transformation
from load to response as a function of frequency. Since the random response is treated as the
integration of a series of sinusoidal vibrations. The discrete (finite element) linear dynamic
system has the equilibrium equation:

Su (M™ i +C™ i + K™ u™ ) = Su™ FY. (16)
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where MM is the mass matrix, C¥M is the damping matrix, K™ is the stiffness matrix, F¥
are the external loads, u" is the value of degree of freedom N of the finite element model,
and 8u" is an arbitrary virtual variation.

The problem is projected onto the eigenmodes of the system, which are first extracted
from the undamped system. The eigenmodes are orthogonal across the mass and stiffness
matrices.

2.5. VON MISES STRESS COMPUTATION
This is a quite critical issue, which has been largely investigated in the literature. Noting that
the von Mises stress is a quadratic stress function, therefore it is a non-Gaussian stress with
positive mean value, even if its stress components are zero-mean Gaussian random stresses.
The first one and theoretical proper definition of the Mises stress in frequency domain
was proposed by Preumont and Piefort [5]. An interesting paper about including the phase
shift into von Mises PSD were written by Bonte [6].
The computation of PSD and RMS of von Mises stresses in this chapter is based on work by
Segalman, et al. [7]. Under this approach the PSD of von Mises stress at a node a is given by:

Sties ()= 202 S (F) T (17)
B=1 a=1

where m is the number of modes, Saﬁ (f) are the elements of the PSD matrix of Vgeneralized
displacements:

T =[ L] (a1 4] (18)

[J%:I are the modal stress components of the o th mode at node a, and the constant matrix A
is given by:

1 _—1 —1 0 0O
2 2
_—1 1 _—1 0 0 O
2 2
_—1 _—1 1 0 0 O
2 2
O 0 0 3 00 (19)
O 0 0 0 3 0
O 0O O o0 o0 3

Similarly, RMS of von Mises stress at a node a is computed as:

RMISES‘ (f) = fiivaﬁ (f) Ty (20)
B=1a=1

where V_; (f) are the elements of the variance matrix of generalized displacements. Figure 1
summarize the spectral analysis of the stationary random response.

3. FREQUENCY DOMAIN APPROACHES OF LIFE ESTIMATION

Fatigue analysis can be conducted in both time and frequency domain. In time domain, rain-
flow counting algorithm is usually used to calculate the number of cycles at each stress and
strain levels based on the time history. Due to random load in many cases, a description in



236 Fatigue life estimate of landing gear’s leg using modal analysis

)
FE Model MOd?I of the
Excitation
———
\ 4 A 4
(" N\
Modal Properties PSD. of .the
Excitation
N J
v v v
Pampine | _’l FRF Modal Excitation
Data
A 4 v
( \
Model Response
N~ J
v
( \

PSD of the Response

A 4

Von Mises Stresses

. J

Figure 1: Spectral analysis of the stationary random response

frequency domain is more efficient and hence using a statistical method is the most
appropriate approach.

There are seven frequency domain fatigue analysis methods have been implemented in
LS-DYNA. Figure 2 illustrates these method and their common applications.

All of the shown methods are based on Palmgren-Miner’s rule of cumulative damage
ratio:

E[D]=% 1t @

Where E[D] is the expected damage ratio, n, is the number of cycles at stress level S;, and
N, is the number of cycles for failure at stress level S, given by material’s S-N curve.

To get n, from the PSD of the random stress response and further compute E[D], a variety
of statistical methods have been used to predict Probability Density Function (PDF) and
rainflow count, namely:

Dirlik, Steinberg, Narrow Band,Wirsching, Chaudhury and Dover, Tunna and Hancock
method.

3.1. DIRLIK METHOD
The Dirlik method is a mathematical tool which used to performing fatigue analysis. To
use this method, signals to be analysed must first be transferred from the time domain to
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Figure 2: Frequency domain methods and their common applications

the frequency domain where they are presented in the form of a power spectral density
(PSD) function. Stress analysis in the time domain is ideally suited to signals representing
periodic or continuous stress loading but for random stress loading data, prohibitively
large time records are often required for an accurate analysis. There are distinct advantages
in performing stress analysis in the frequency domain rather than the time domain where
a random stress loading signal forms the basis for analysis. The main advantage is much
less time intensive calculations although this comes at a cost of slight loss in accuracy.

Any fatigue analysis process begins with the response of the structure or component. This
is normally expressed as a time history of stress or strain. Stress cycles in the time history
result in fatigue and the most important aspects of these cycles are the stress amplitude
ranges and the mean stress values. These values are normally analysed using Rainflow Cycle
Counting. The time history data can be converted to data in the frequency domain by using
a variation of the Fourier Transform. In both formats, the y-axis displays the signal amplitude
but in the frequency domain, the x-axis represents the signal frequency as opposed to time.
The Fourier Transform effectively breaks the signal down into discrete sinusoidal waves.
These waves vary in frequency, phase and amplitude and form the original time signal again
when combined using an inverse Fourier Transform.

The Dirlik method [8][9], devised in 1985, approximates the cycle- amplitude distribution
by using a combination of one exponential and two Rayleigh probability densities. It is based
on numerical simulations of the time histories for two different groups of spectra. This method
has long been considered to be one of the best methods and has already been subject to
modifications, e.g., for the inclusion of the temperature effect, by Zalaznik and Nagode [10].

The Dirlik method consists of a series of calculations which are based on four moments
of area of the PSD function and was taken from Halfpenny [11]. These moments of area are
m,, m;, m, and m,. The nth moment of area is calculated as:

m,= [ f".G(f)df (22)

where G(f) is the PSD function and f is the frequency in Hertz
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The rainflow cycle amplitude probability density, p, estimate is given by:

1 |G 2 .62z & =
D, (S):\/nT EleQ +?e” +G,Ze ? (23)
0
where Z is the normalized amplitude:
Z= S 24)

T

For a fatigue analysis the moments up to m, are normally used. The even moments
represent the variance 0'; of the random process X and its derivatives:

Oy =m, Oy =m, (25)

and the parameters G1 to G3, R and Q are defined as:

2(x,—0) -0, -G, +G?
G =— G, =
1+, 1-R
—x —-G?
G,=1-G, -G, R=_% "% L
1-o, -G, +G,
_ 1,25(a, =G, -G, R) (26)
G,
where x, is the mean frequency, as defined by the author of the method [8]:
1
my | m, |
X, =—| — 27
my | m,
where «; is used for spectral width estimation and it has the general form:
o. = M (28)

i [
mO m2i

4. FREQUENCY DOMAIN RANDOM VIBRATION ANALYSIS

The random vibration capability of LS-DYNA® originated from Boeing’s in-house
vibroacoustic code N-FEARA [12]. This feature computes the dynamic response of
structures exposed to vibration or structural-acoustic coupling based on a known source.
Various excitations and acoustic environments can be considered, including base excitations,
correlated or non-correlated acoustic waves such as plane wave, progressive wave,
reverberant wave, turbulent boundary layer, etc. [13]

A keyword has been introduced in LS_DYNA® to perform random vibration analysis.
Through the keyword, user provides information about the location, direction, range of
frequencies for the random excitation and response area can be given as node, set of nodes,
set of segments, or part. The direction of load can be in any of the x, y, z directions or given
as a vector. Load curve IDs for the PSD loads in random computation are also specified
under the keyword [14].



Int. Jnl. of Multiphysics Volume 8 - Number 2 - 2014 239

The feature of random vibration fatigue is implemented as an option of the keyword, as
it is a natural extension of the random analysis procedure. The method for performing
fatigue analysis is defined as well as the parts or elements where the fatigue analysis is
needed. The material’s S-N fatigue curve and some other options like the exposure time are
also defined.

Modal analysis is the first step for running the analysis and then the implicit solution
started.

Ringeval A. and Huang Y. [14] give in their paper several examples to demonstrate the
effectiveness of the random vibration fatigue analysis feature with LS-DYNA®. One of those
examples is a simple cantilever aluminium beam [15] subjected to base accelerations. The
numerical values are compared with the experimental results and different fatigue failure
theories are used to predict fatigue life. That example is considered as a benchmark for the
verification of the results obtained with LS-DYNA® as the authors compare their results with
those found in the literature on the same subject. Also, the same problem has been simulated
with ANSYS® and RADIOSS® BULK and the maximum root mean square (RMS) stress
computed by LS-DYNA® is in good agreement with the results obtained by the other
commercial software.

5. LANDING GEAR DESIGN

The landing gear is a structure that supports an aircraft on ground and allows it to taxi, take
off, and land [15]. In fact, landing gear design tends to have several interferences with the
aircraft structural design. Nowadays the weight of landing gear has become an important
factor. Efforts are being made to reduce the weight of the aircraft and consequently increase
the payload. Design of landing gears takes the effect of static and dynamic loads as well as
the impact loading. This paper presents analysis for prediction of the service life for a light
landing gear with a thickness optimized to only 8 millimeters. This design optimization
where carried by Albahkali E. and Alghtani M. [17]. Dimensions of the landing gear are
shown in Figure 1.

S — —

/N

Figure 3: Geometry details of the landing gear (all dmensions are in millimeter)
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As shown in Figure 4, the landing gear is clamped to the fuselage in its middle horizontal
part. The two wheels attached to its ends are weighing 0.651 kg each.

Figure 5 shows Power Spectral Density (PSD) outputs in g2/Hz for the landing gear
vibration with change in frequency. It indicates random vibration loads on the landing gear.
The modal frequencies required to calculate the resultant effect of modal spectrum vibration
are extracted up to the spectrum frequency.

Figure 4: Landing gear
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Figure 5: Input acceleration PSD
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The landing gear is made from AA7076-T6 aluminum alloy with density p = 2700
kg/m3, Young’s modulus E = 70 G Pa and Poisson’s ratio v = 0.33. The S-N fatigue
curve, Figure 4, is selected according to the European Standard Eurocode 9 [18] with a
reference fatigue strength Ac = 71 MPa at 2.106 cycles and a single inverse constant
slope m = 7.0.

6. ANALYSIS STEPS

The model is meshed with 9073 nodes and 8576 shell elements (fully integrated linear
DK quadrilateral and triangular shell). The two wheels are represented by 28 mass
elements with 0.0465 kg each. They distributed uniformly at the circumference of the two
holes. The upper face is subjected to base Acceleration Spectral Density for the range of
frequency 0-2000 Hz. A constant damping ratio 0.035 is adopted. The landing gear is
exposed to the random vibration load for 45 minutes (2700 seconds) which is equal to the
flight time.

The first 10 natural modes are required for the eigenvalue analysis. Lobatto’s integration
rule with three integration points through the thickness of the landing gear is applied to get
the stress on the shell surface. The shear factor which scales the transverse shear stress, is
suggested to have a value equal to 5/6. For shell element with implicit solution the invariant
node numbering is taken as 2. An infinite fatigue life for stress lower than the lowest stress
on S-N curve (40.6 MPa) is assumed.

Ne=N, N
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Figure 6: S-N fatigue curve used for the landing gear material
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Figure 7: Stress PSD at critical point

Table 1 Fatigue life obtained by the numerical predictions methods used in
LS-DYNA®,

Method used Fatigue life (Hrs.) Cumulative fatigue ratio
Steinberg 994.1 0.000754

Dirlik 3037.6 0.000246

Narrow Band 386.7 0.001939

Wirsching 1389.9 0.000539

Chaudhury and Dover 1035.1 0.000724

Tunna 67021.7 0.000011

Hancock 1040.0 0.000721

7. RESULTS

The response stress PSD measured at the critical point shows that two natural frequencies are
excited by the input loading in the range 10-2000 Hz (Figure 5), the first natural frequency
(11.711 Hz) and the fifth natural frequency (105.77 Hz). When examine the model with
higher input acceleration PSD load (g"2/Hz = 0.1), the eighth natural frequency (287.244
Hz) is excited also. Table 1 summarizes the fatigue life obtained by the numerical predictions
methods.

As shown in Table 1, the results depend on the method used to interpret the RMS results.
Steinberg, Chaudhury and Dover and Hancock methods give close results but conservative.
Wirsching method gives less conservative results. Tunna’s prediction is completely off.
Narrow Band’s prediction is too conservative comparing to the other methods. Figure 8 and
Figure 9 show contour plot for the cumulative damage ratio and the RMS of Sx stress at the
critical point using Dirlik method respectively.

Based on Dirlik method results, the service life for the landing gear will be equal to
3037.6 Hrs. or 4050 flight trips.
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Figure 8: Cumulative damage ratio by Dirlik method
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Figure 9: RMS of S, stress at the critical point using Dirlik method

8. CONCLUSION
This paper presents solving frequency domain random vibration fatigue. The analysis
provides cumulative damage ratio calculation and fatigue life prediction for a typical UAV
landing gear subjected to random vibration excitations based on various theories. Dirlik
method which has long been considered to be one of the best methods is demonstrated.

The conservatism associated with Narrow Band solution method is clear as it gives the
lowest predicted service life. On other side, Steinberg method didn’t give excessive non-
conservative results as the applied random signal is a broad-band one.

In design of a structure in consideration of fatigue life, it is very important to evaluate not only
a fatigue life under the constant loading but also a fatigue life under the service loading. Due to
weight constrain, as in the case of the landing gear design, the margin of the factor of safety is
limited. Therefore, it is essential to conduct fatigue analysis also to predict the service life. In
addition, the frequency response approach can improve understanding of the system dynamic
behaviors, in terms of frequency characteristics of both structures and loads and their couplings.
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