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ABSTRACT

The complexity of natural systems often prohibits our understanding of
governing principles of the systems. The prediction of flow and solute
transport through large-scale geological systems is challenging, since
accurate predictions involves a detailed characterization of the spatial
distribution of hydrologic parameter values. For simplicity reasons, most of
the past studies of groundwater flow and solute transport assumed
homogeneous aquifers. Numerical methods of estimating hydrologic
properties of aquifers used the homogeneity assumption because of
mathematical challenges associated with the heterogeneity of aquifers. In
the present work we investigate the transport processes in watersheds
using a two-dimensional model for flow and particulate transport in the
subsurface system. The study reveals that the particle dispersion depends
strongly on the heterogeneity of the aquifer. Thus, the particles exhibit a
slower speed in the regions of low conductivity. Moreover, the particles
exhibit a preferential path, following the path of minimum resistance.
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1. INTRODUCTION

The understanding of subsurface flow and solute transport processes is of critical importance
for effective and efficient management of environment and water resources. The
hydrosystem within a watershed comprises many hydrological, morphodynamic, and
environmental processes, such as rainfall, runoff, groundwater flow, infiltration, evapo-
transpiration, recharge, upland soil erosion, sediment transport, and contaminant transport.
These processes may significantly affect water quality and aquatic ecosystems.

In the past decades the numerical modeling has emerged as efficient and effective tool to
investigate these processes and evaluate their effects. Thus, numerous models have been
developed for the analysis of aquifer heterogeneity, flow and transport. Most of these models
are based on the stochastic field/process concept [6, 7, 9, 10, and 13]. However, the accuracy
of this concept is yet to be assessed. The challenges posed by the use of this concept stem
from the fact that the aquifer heterogeneity and associated flow and transport processes, at
some scales, are not as irregular and complex as those at other scales.

Efficient and accurate evaluation of the flow velocity is mandatory for any numerical
model of multidimensional transport through porous media. On the other hand, the
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computational efficiency is of particular importance for the simulation of randomly
heterogeneous medium, since hundreds of realizations are necessary for a detailed
description of the transport process. For particle tracking techniques, the performance of
numerical models depends on the prediction of velocity field. The Finite Difference Method
(FDM) and Finite Element Method (FEM) are the most commonly used numerical
techniques for groundwater flow and transport. Generally, the numerical methods first solve
for the hydraulic head (potential) at the grid points and then obtain the velocity by numerical
differentiation. This is usually associated with the loss of one order of accuracy, in the
velocity computations, and discontinuities in velocity components at the element boundaries.
Generally, at the interface of two different materials, the velocity component normal to the
interface should be continuous while the tangential component exhibits a discontinuity.

Extensive research has been conducted in the past two decades to analyze the effect of
geological heterogeneity on contaminant transport [1-15]. Experimental and numerical
studies have shown that the transport of solutes in porous media can be significantly
influenced by the spatial variability in physical and geochemical parameters, such as
hydraulic conductivity, porosity, and sorption coefficient [1-3].

Previous studies showed that the physical heterogeneity of the porous medium plays a key
role in the contaminant transport [14]. These studies showed that the flow and transport in
groundwater are strongly affected by the hydraulic properties of the medium, and thus
accurate prediction of these groundwater processes requires advanced modeling. Generally
the transport processes in the subsurface exhibit temporal and spatial variability, and thus it
is assumed that the heterogeneous nature of aquifers determines a random behavior of flow
and transport. The present work concerns the effects of hydrodynamic heterogeneities on the
contaminant transport in aquifers using numerical modeling.

2. COMPUTATIONAL METHOD AND MODELS

2.1. COMPUTATIONAL METHOD

Contaminants are transported, in the porous medium, by the pore water flow. The governing
equations for the single phase flow of a fluid (a single component or a homogeneous mixture)
in a porous medium are given by the conservation of mass, Darcy’s law, and an equation of state.
Laboratory and small-scale field experiments have substantiated the validity of Darcy’s law for
flow through porous media [3—7]. The one-dimensional Darcy law is given by Equation (1)

0 =—KA(dh/ds) (1)

where Q is the discharge rate in the s direction and the constant of proportionality K is the
hydraulic conductivity in the s direction, a property of the porous medium and the fluid filling
the pores. In Equation (1), 4 represents the cross-sectional area of a sand column and d# is the
head difference between the manometers. The Darcy law for 3D flow can be written as:

q, =—K oh/ox
q,= —Kyah /dy 2)
q, =—K_oh/oz

For a confined aquifer, the 1D flow equation can be obtained from the mass balance and
Darcy’s combined with the specific storage (S)):
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Equation (3) assumes that the spatial gradient of water density is negligible (mostly fresh
water). For a 3D flow the general equation is:

d 8h+iK8_h+8 ah_ oh @)

x| Fox o\ Yy ) dz| ‘oz 5 ot
Thus, the hydraulic head (% = h(x, y, z)) must obey this PDE to be consistent with both the
Darcy’s law and mass balance. It is worth noting that Equation (4) also makes use of the
assumption that the spatial gradient of the water density is negligible, and the principal

conductivity axes must be aligned with the coordinate axes. Equation (4) is the most
universal form of the saturated flow equation for a confined aquifer, allowing flow in three

ot

spatially variable), and anisotropic porous medium (K, Ky K ). From Equation (4)

. . . oh .
dimensions, transient flow [—;tO , heterogeneous conductivities (e.g., K, Ky, K are
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and making use of ¢ =K Vh where K K Knyy , we obtain the most general flow

K_K_K
X zy iz

equation

V. ( KVh) gh 6)

It is worth noting that Equation (4) is just a reduced form of the most general equation,
given the condition that conductivity principal directions are aligned with the coordinate
axes. Less general forms of flow equations can be derived from Equation (4) by making
various simplifying assumptions. Thus, if the hydraulic conductivities are assumed to be
homogenous ( K, Ky, K_ are independent of x, y, z), the general equation can be written as:

2, 2, 2
K P Ph g Ph_on o
Tt Tyt Tar o

An alternative form of the flow equation can be obtained by substituting the Darcy’s law,
Equation (2), in Equation (4). The new equation is given by

d 0 0 _o o
—{g(qx)Jfg(‘]y)ﬂLa—Z(qz) =S, % (®)
_ ah
or -V.g= ‘at 9)

In the present work the equations are solved using the finite element method (FEM). The
flow domain is represented by a rectangular mesh composed of square cells; each cell is
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Figure 1 Basis functions in one dimension.

divided into two triangular elements. The computational domain is shown in Figure 1. Linear
basis functions are used in the finite element formulation. After solving the hydraulic head
h, the x and y components of the average interstitial velocity vector are computed by

y - Ko (10)
* n ox

K oh
y =_Lot 1
Y n dy (b

where n is the porosity. The velocity vectors are used for computing the flow paths and
advective movement of fluid particles. It is worth noting that in a flow field with nonuniform
velocity, a cloud of fluid particles will tend to spread. This spreading can be described by the
spatial variance (in the x and y directions) of particle positions

S =i§:(x.—x )2 (12)
XX Nl=0 1 C

15 2
Syy—ﬁ%‘;(y,.—yc) (13)
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In Equations (12) and (13) N is the total number of fluid particles, x; and y, are the x and
y coordinates of the i-th particle, x, and y,_, denote the x and y positions of the center of mass,
defined as

X, =—2xi (14)

Y, =l2yl- (15)

If each fluid particle is assumed to carry a fixed amount of solute mass, then particle
spreading is analogous to macro-scale solute dispersion. In the macro-dispersion approach,
the small-scale variation of velocity is not explicitly simulation. Instead, solute spreading is
characterized by a dispersion tensor. The components of the dispersion coefficients can be
estimated by

das
D —1—dSW 17
W dr a7

As already mentioned, the equations of groundwater flow are solved using the finite
element method. The finite element method (FEM) and finite difference method (FDM) are
equivalent in the view of their accuracy. The only difference between the FEM and FDM is
the way of approximating the flow equations. The FEM approximates the equation by
integration while the FDM approximates the equation by differentiation. The mathematical
approach to solve the unknown heads is briefly described in the following. For 2D flow in a
confined aquifer the equation is

9| pohl, 9\ ok +Q—Sa—h=0 (18)
ox\ dx ) dy| oy ot

where Q in [L3/T] stands for the external sources and sinks and 7 in [L%*/T] stands for
transmissivity. When the boundary conditions are expressed in terms of the hydraulic head
or flux, one must find the head distribution /4 that satisfies Equation (18) everywhere inside
the domain at every instant in time. The exact head distribution cannot be determined in
complex systems. Generally FEM approximates the solution of 4 by piecewise linear
functions. To illustrate the FE approximation, let us consider a four elements model, as
shown in Figure 1.
The governing flow equation is

d|..0h oh
22| g% _g
ax[ axj ot (19)

In 1D for a given time, straight lines as elementwise approximation for the head
distribution are found
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h=a+bx (20)

where 4 represents the approximate head. Let us consider four elements.

. +
i={s
0

. (x—x3) x;<x<x,

@

hy—hy
-x

47 *3
elsewhere

An alternative way to express 4 is by using interpolation functions, also referred to as
basis functions, ¥ defined by Equation (22) and shown in Figure 1, and by formulating / as
a weighted average of the nodal values /4, and 4,.

le[>x,_,
0
<,
= <x<
V= X 1SX5X (22)
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The approximation for the head distribution in element 3 is

. +
i={
0

(x—x3) x;<x<x,

hy —hy
X4—X

X (23)
elsewhere

The approximation for the entire head distribution results from the summation of the
contribution of each element and it is found that

h= oy, + hyy, + by, + by, + by, (24)

Equation (24) represents an approximate solution to the flow problem, but the nodal head
values #, are still unknown. The solution becomes exact for an infinitesimal discretization:

h=lim Y by, (25)

n—oo”;
i=1

where 7 represents the number of nodes. For a finite #, the solution remains an estimate:
h=h=Y hy, (26)

Consequently we find for the 1D case

KA DA L 27)
ox| ox ot
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where ¢ is the residual. The nodal heads #, are still undetermined. It is worth noting that from
a numerical point of view the residual € must be kept small since € = 0 corresponds to the
exact solution. Although the governing flow equation cannot be satisfied everywhere, we
determine /4, such that the residual on average is forced to converge to zero over the solution
domain as expressed in Tsdx =0. Locally € will not generally be zero. To force the residual
X

on average to zero, the FEM applies the weighted residuals. Using this method the residual
weighted by an arbitrary function f(x) demanding that the area integral still be zero:

[efdx=0 (28)

X

Since there are only n unknowns, only n conditions or functions can be applied to
Equation (28). The popular Galerkin method is a special form of weighting method in which
the n interpolation functions y; are chosen as the n weighting functions g,

F@=1,=v, 29)
Thus, Equation (28) becomes

[ewdx=0fori=1+n (30)
X

Combining Equations (26), (27) and (30) we obtain

. 2y P B
I TSt (S5 3 h fdr=0 (1)

x i=1 =1

forj=1+n.
Developing Equation (31) step by step, a set of algebraic equations is formed for the
unknown groundwater heads %, The discretized equations are given by:

11 A —h, h., .. —h h._ —h._ q, -q,
1 i+1,k+1 i+1,k +4 1,k+1 i,k + i—1,k+1 -1,k +& i+1,k+1 i—1,k+1

6 At At At 2Ax

(32)

Hl—g) qi+1,k2;ji—l,k —0

In the present problem the boundary conditions are of Dirichlet type. For more details on
the FEM, the reader is referred to [5].

2.2. COMPUTATIONAL MODEL

Generally, groundwater flow in aquifers is modeled as two-dimensional in the horizontal
plane. This holds accurate results since most aquifers have large aspect ratio, with horizontal
dimensions hundreds times greater than the vertical thickness [5]. Thus, it can be assumed
that the groundwater flows along the horizontal plane, meaning that the spanwise velocity
component is small. The computational domain is illustrated in Figure 2.
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X

Figure 2 Computational domain.

3. RESULTS AND DISCUSSION

As already motioned the objective of the present study is to investigate the effect of
heterogeneous porous medium on the particle dispersion. Figure 3 presents the
heterogeneous computational domain. Figure 4 presents the particle dispersion at different
instants in time. The study reveals that the particulate phase exhibits a preferential
dispersion, which depends on the conductivity of the medium. Thus, the low values of
conductivity cause the particles to travel at lower speeds as well forcing the particles to find
the path of minimum resistance. This is well illustrated at instant ¢ = 70[days]; when the
cluster of particles reaches the low conductivity porous region, the particles try to find a
different path of lower resistivity. A good insight into the particles preferential path can be
obtained from the observations of particle trajectories at instants ¢ = 10[days] and
t = 70[days]. The comparison of particle dispersion at these two instants in time shows that
the cluster of particles entering the region of low conductivity (red-color in the middle of the
domain) travels at much slower speed. The analysis of particle dispersion at instant
t = 150[days] reveals the preferential path of particle trajectories. Thus, most of the particles
prefer to travel on the paths of minimum resistance (high conductivity).
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Figure 3 Heterogeneous porous medium.
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t=400 (days)

Figure 4 Particle trajectories.

Figure 5 presents the effect of heterogencous medium on the particle dispersion. To
conduct this study a cluster of particles is released at the upper region of the computational
domain as shown in Figure 5 at instant # = 1[day]. The analysis of particle dispersion shows
that at the initial stage, 10[days], the particles distribute at the upper boundary of low
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t=20 (days) t=50 (days)

t= 85 (days) t=110 (days)

t=400 (days)

Figure 5 Particle dispersion.

conductivity region (red color). A percentage of the particles, about 35%, transits this low
conductivity region, while the rest of particles enter a region of high conductivity, and thus
are being transported further. The analysis reveals that the particles transiting the low
conductivity region exhibit slow speed when compared with the particles transiting high
conductivity regions. The anisotropic nature of the porous medium is reflected on the particle
dispersion. Thus, the cluster of particles travels on the paths of minimum resistance. From
Figure 5 it can be seen that the cluster of particles make a turn, when encounters the region
of low conductivity (red color), searching for paths of minimum resistance. Once the
particles reach the regions of high conductivity they travel much faster towards the terminus
destination.

As part of this work, a second study is conducted to investigate the effect of a highly
randomized heterogeneous porous medium on the particle dispersion. Figure 6 shows a
highly random heterogeneous porous medium. In this case we assume that the variation of

the heads, in the normal direction, is almost negligible (i.e %yh: 0). Figure 7 presents the

time-varying particle trajectory at three different instants in time. The analysis of numerical
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Figure 7 Time-dependent particle trajectories.
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results emphasizes the preferential dispersion of particles in the heterogeneous medium.
Thus, the particles avoid the region of low conductivity and follow the paths of minimum
resistance defined by high conductivity. The preferential particle’s trend is also well
illustrated in Figure 8. At the instant 1[day], the parcel of particles is released into the

t=1 (days)

t= 60 (days)

t=150 (days)

t= 300 (days)

Figure 8 Particle dispersion in a randomly heterogeneous medium.
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computational domain. The analysis of the numerical results reveals that the particle
dispersion is mainly in the horizontal direction. It is also observed that the particles exhibit
a preferential dispersion following the paths of minimum resistance.

The present study shows that the heterogeneous nature of the porous medium causes the
particles to exhibit different speeds, and thus particles which travel regions of high
conductivity would travel faster than the ones traveling through regions of low conductivity.
Moreover, the particles always search for the path of minimum resistance. Particles transiting
the regions of low conductivity are forced to reside in these regions for long periods of time.
This would raise serious concerns for particles posing health hazards. Thus, a detailed
knowledge of the subsurface composition would help diminish these health hazards.

4. CONCLUSIONS

A particle tracking algorithm is developed for the study of particle dispersion into porous
media. The effect of heterogencous medium on the particle dispersion is subject of
investigation. The study reveals that the particles exhibit a preferential dispersion which
depends on the conductivity of the medium. It is observed that the particles travel on the path
of minimum resistance. Also the particles traveling through regions of low conductivity exhibit
lower speeds than the one traveling though regions of high conductivity. Particles transiting the
regions of low conductivity reside in these regions for long periods of time. The FEM is a
computationally efficient approach for the prediction of particle dispersion into porous media.
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