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ABSTRACT

The effect of particle shape and heterogeneity on hydraulic anisotropy of

unconsolidated granular packs is hereby investigated. Direct simulation

was carried out on synthetically generated spherical, aspherical, ellipsoidal

(aspect ratio of 2 and 3) and lenticular samples. Single phase Stokes

equation was solved on models discretised on finite element geometries

and hydraulic permeability computed in the horizontal and vertical

directions to estimate the degree of anisotropy.

The spherical and aspherical packs with varying degrees of particle

shapes and heterogeneities are virtually isotropic. Ellipses with aspect

ratios 2 and 3 have higher anisotropy ratios compared to the spherical and

aspherical geometries while the lenticular geometry is the most anisotropic.

This is attributable to the preferential alignment of the grains in the

horizontal flow direction during random dynamic settling under gravity.

1. INTRODUCTION
Anisotropy (Kh/Kv) is a measure of the directional change in permeability of a rock sample.
Anisotropy controls single and multi-phase fluid flow effective mobility through porous
systems. Small scale anisotropy in geologic formations may occur due to: stratification,
directional rock fractures or orientation of non-spherical grains.

The hydraulic anisotropy of soils and sedimentary rocks has a great effect on fluid flow
and contaminant transport. Hence, an understanding of the anisotropy ratio is important for
many subsurface fluid-associated problems such as the design of oil or water well fields,
underflow beneath dams and dykes, internal erosion in soil masses or settlement rates of
consolidating clays.

In the field, anisotropy is mainly due to rock fracturing and sediments forming strata.
Induced anisotropy by continuous or discontinuous isotropic layers has been studied
extensively [1–5]. The geo-statistics approach to the permeability of heterogeneous media
was developed by [6, 7] and used in numerical simulations [8]. Small scale anisotropy may
occur from stratification due to the process of formation of the rock [9], directional rock
fractures [10] or orientation of non-spherical grain particles during deposition [11].
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The hydraulic anisotropy of clays is known to increase during consolidation (e.g. [12, 13]).
Anisotropy ratio in transport properties of clay-bearing formations which exhibit grain shape
alignments may be pronounced [14–19]. Also, homogeneous grains appear to be
hydraulically isotropic at their highest void ratio and their anisotropy ratio increases when
the density increases [20].

Most of the observed variation in permeability of shale formations can be attributed to
porosity variations [15, 21–27], grain size and pore size distributions [15, 23, 25–28].
Furthermore, high anisotropy ratios observed in apparently homogeneous aquifers are
caused to a lesser degree by orientation but caused mainly by micro-stratification [29].

Anisotropy also affects production from hydrocarbon reservoirs; the larger the degree of
anisotropy the higher the productivity index. When vertical permeability is low, wells
completed horizontally may become economically unattractive. Wells drilled and
completed normal to the larger horizontal permeability will potentially be a much better
producer than one drilled and completed arbitrarily or normal to the smaller horizontal
permeability. It is therefore pertinent to measure permeability before the horizontal section
is drilled [30].

A lot of work has been done on the anisotropy ratio of cohesive soils and sedimentary
rocks using probe (mini) permeameter (e.g. [31, 32]). However, little has been done on how
grain shape and packing heterogeneity influence the hydraulic anisotropy of unconsolidated
granular materials.

In order to investigate the effect of particle shape on hydraulic anisotropy, several
numerical experiments were conducted on synthetic granular packs consisting of spherical,
aspherical, ellipsoids; with aspect ratios 2 and 3 and lenticular geometries. During the
dynamic settling of the granular packs, the aspect ratio was varied and the degree of particle
alignment was determined using the nematic order parameter [33].

2. METHODOLOGY
2.1. CONSTRUCTION OF SYNTHETIC GRANULAR PACKS AND SETTLING
PROCEDURE
A detailed description of how the synthetic granular packs used in this study were
constructed has been presented in [33]. Basically, the shapes of particles are constructed
using the information derived from the surface mesh obtained via scanning technologies. A
model particle is then constructed by sequentially adding spheres to the volume enclosed by
the mesh. As more spheres are added, the enclosing surface of the cluster approximates the
surface of the real particle represented in the original mesh.

The grain packs are then constructed by allowing the grains to fall under gravity into a
confined box while allowing interaction between the grains and the bottom wall. When the
kinetic energy of the system reaches a negligible value and every grain contacts either the
wall or another grain, new batch of grains settles in the box above those previously
deposited. This process repeats itself until the initial box is filled; the grains are not frozen
at any stage. Hence, each new subset of grains entering the box interacts with previously
deposited grains, allowing for future relocation of already settled grains. This extra dynamics
allow the construction of denser packs of real sands. The porosities of the resulting packs
depend on the particle shape and the friction coefficient used for the grain-grain interaction.
Figures 1(a-d) show packs of spherical and aspherical grains with varying degree of
heterogeneity. Figures 2(a-b) show ellipsoidal grain packs of aspect ratio of 2 and 3 and
Figure 2(c) shows a lenticular pack geometry.



2.2. PORE-SPACE CAD MODEL CONSTRUCTION
The digitised binary representation of the porous media are processed and differentiated into
GRAINS and PORES using Computer-Aided (CAD) geometrical package accomplished with
Non-Uniform Rational B-splines (NURBS) curves and surfaces (e.g. Figures 1 and 2).

The NURBS curves and surfaces allow to capture the geometries with a tolerance-based
(typical absolute tolerance is 1e−7) level of detail, independent of scale allowing a purpose
dependent adaptation of the mesh to smooth geometry. Volumetric objects are then defined
by grouping curve-delimited surfaces together by a technique called Boundary
Representation (BREP).

This refers to a hierarchical, internally consistent tree structure of points (nodes), holes and
surfaces (loops) and surface enclosed pore volumes (body), recording their relations to each
other. Fourth order splines are used to represent grains and outer boundaries are resolved into
surfaces with six side boundaries; four no-flow and two Dirichlet conditioned boundaries, for
further import to the geometry editor of the mesh generation code. For all the CAD models
constructed here, the knots in the NURBS curve are non-uniform and of degree 3.

2.3. BOUNDARY CONDITIONS FOR UNCONSOLIDATED GRANULAR PACKS
A sub-volume far from the boundaries of the porous media packs is extracted to avoid
boundary effects such as distortions in the solid skeleton or zones of abnormal porosity. The
dimensions of the granular packs are approximately 6 − 7 times the mean grain diameter in
all directions. The part of the grains that are not contained in the sub-volume are discarded.
The packs are then differentiated into two domains: Grains and Pores.
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(a) (b) (c) (d)

Figure 1 CAD models of (a) spherical homogeneous grain pack (b) spherical but
heterogeneous grain pack (c) aspherical homogeneous grain pack (d) aspherical
and heterogeneous grain pack.

(a) (b) (c)

Figure 2 CAD models of (a) ellipses with aspect ratio, R = 2 (b) ellipses with aspect
ratio, R = 3 (c) lenticular geometry.



In order to simulate flow, two Dirichlet and four no-flow boundary conditions (Figure 3),
were defined in the ‘CAD’ geometrical package accomplished with NURBS curves and
surfaces.

3. FINITE ELEMENT DISCRETISATION OF THE PORE-SPACE
In order to discretise the pore-space of all the geometric samples investigated, an
unstructured hybrid mesh consisting of tetrahedral, hexahedral, prism and pyramid elements
(Figure 4) was used. The unstructured grids can fit free-form geometrical entities, such as
NURBS with spatially variable refinement and they can also be generated automatically. For
realistic hybrid meshes of free-form geometry, the quality of the resulting mesh can be
evaluated by using the element to node ratio. A value close to 2 can be obtained for hybrid
meshes when compared with 5 − 6 for pure tetrahedral meshes [34].

In the geometrically unconstrained regions, hexahedral dominated elements were used.
More shape-adaptive tetrahedral elements are used to capture geometric complexities and
intentional refinement variations. These perform well even if they have a large aspect ratio
[35]. This dramatically reduces the number of elements required to represent pore geometries.
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Figure 3 A geometric representation of the model set-up showing four no-flow
and two Dirichlet (inflow and outflow) boundaries.
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Figure 4 Finite element types.



The typical size of the mesh is in the range (1.4 − 1.8) × 106 elements. Examples of typical
3D meshes of each of the CAD geometries generated in Figures 1 and 2 are shown in 
Figures 5 and 6.

4. FLUID FLOW EQUATIONS
The partial differential equations governing the flow of an incompressible Newtonian fluid
are the Navier -Stoke’s equation

(1)

and the law of mass conservation for incompressible fluids can be written as

(2)

The variables ∇P, ρ, µ and reduced pressure gradient, fluid density, fluid viscosity and

velocity vector respectively. is the partial derivative with respect to time. The boundary 

conditions include: no slip at any boundary between the fluid and the solid; this implies that
at the grain walls, the normal and tangential components of the velocity are zero. The only
body force accommodated is gravity. This is defined through the reduced pressure gradient
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(a) (b) (c) (d)

Figure 5 Typical finite element meshes of the CAD models shown in Fig. 1. Hybrid
mesh consisting of tetrahedral, hexahedral, prism and pyramid elements are used
and number of elements ranges between (1.4 − 1.8) × 106.

(a) (b) (c)

Figure 6 Typical finite element meshes of the CAD models shown in Fig. 2. Hybrid
mesh consisting of tetrahedral, hexahedral, prism and pyramid elements are used
and number of elements ranges between (1.68 − 2.40) × 106.



[36, 37] Where p is the pressure and is a unit vector in the

vertical direction. 

Since the relationship between permeability and pore geometry is most readily studied
using steady-state flow, transient effects are ignored and fluid density is assumed to be
constant. This implies that at any fixed point in space, the velocity does not vary with time
and the equations reduce to

(3)

The presence of the advective acceleration (second term on the left hand side) causes the
equations to be nonlinear and consequently very difficult to solve.

In the case where the fluid is incompressible and this term is far smaller than the viscous
term (first term on the left), which is a typical situation in flows where the fluid velocities
are very slow (creeping flow), the viscous forces are very large, or the length-scales of the
flow are very small so that the Reynolds number (Re = uL/µ, where L is a characteristic
length) is small (typical Re values for flow in geological porous media are 10−5 or lower),
this equation reduces to the Stoke’s equation [e.g. 38, 39]:

(4)

5. NUMERICAL SOLUTION SEQUENCE
Eqn 4 is solved numerically in three-dimensional pore-spaces by first solving for a function
ψ (x, y, z) and then computing the pressure gradient ∇P. Considering a Newtonian fluid;
which exhibits a linear stress-strain relationship with constant viscosity, the velocity can be
written as:

(5)

The function ψ (x, y, z) can be obtained simply by solving the Poisson’s equation

∇2ψ (x, y, z) = 1, (6)
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(a) (b) (c)

Figure 7 (a) Pressure and (b) velocity fields within the pore space of the geometry
(c) Zoom into the velocity field of a region in (b).



with ψ(x, y, z) = 0 at the grain boundaries (homogeneous boundary conditions).
Given that the parabolic profile within the pore space is adequately captured [40]; with

no-slip boundary condition at the grain surface, this two-step approach is less restrictive and
basically approximates the Stoke’s equation.

To compute the pressure field, the equation

(7)

is solved once ψ is known. This ensures that for an incompressible fluid considered here, the
divergence of is zero thus:

(8)

Since the computed velocity is piece-wise constant from finite-element to finite-element
and discontinuous across the element boundaries; a complementary node-centered finite-
volume (NCFV) is used to measure . This approach is detailed in [41].

5.1. FINITE ELEMENT DISCRETISATION OF THE FLOW EQUATION
In order to compute the velocity field on each finite element, a linear finite element method
with linear interpolation function N was adopted where the pressure field (Ph) is
approximated by expansions of the form:

where Pk is scalar of nodal value of pressure for nodes k = 1...n. The integral form of Eqn 8
for an incompressible fluid over a typical element Ωe bounded by Γe is now written as

(10)

In this Bubnov-Galerkin method [42, 43], the weighting functions are the same as the
interpolation functions. Introducing the expansion for P (Eqn 9), we have

(11)

The left hand side of the equation is expanded by partial integration after which Green’s
theorem is applied to obtain

(12)

The above equation can be written in a n × n system of linear equations of the form
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The solution of the above equation requires that the value of the pressure is fixed at the
inlet and outlet of the model (Dirichlet boundary conditions) while no slip boundary
conditions are assigned on all the other faces. The resulting matrix of linear algebraic
equations is solved with the algebraic multigrid solver [44]. The results are stored at the finite
element nodes. Given that shape function derivatives are constant (since linear shape
functions are used) within each element, and the parabolic function Ψ as well as the fluid
viscosity µ are constant then, the product of these and the nodal values of pressure gives a
constant value of velocity at the barycenter of the element. For a range of other finite element
shapes, the interpolation functions can be found elsewhere [45, 46].

5.2. HYDRAULIC PERMEABILITY AND ANISOTROPY
Having computed the velocity fields as described in section V, the permeability, κ, is
computed thus:

(14)

where ∆P is the pressure difference per unit length along the direction of main flow, A is the
cross-sectional area open to flow and q is the cross-sectional flux.

The flux q, (in m3s−1) through a finite volume cell is defined as

(15)

and is accummulated by summing the fluxes across the facets of each sector of the FV:

(16)

for n sectors and m facets.
Thus, the local piece-wise constant velocity is projected onto facet normals, n.
These dot products are multiplied by facet area and summed over all finite volume facets

to complete the surface integral. Green’s theorem establishes the equivalence of volume 
(V ) and surface (S) integrals of the form

(17)

The effective horizontal hydraulic permeability (Kh) and the effective vertical hydraulic
permeability (Kv) are computed as shown in Figure 3 and the anisotropy ratio (Ar)
determined from the ratio Kh/Kv and results summarised in Table I.

5.3. POROSITY
The porosity is established as a by-product of the discretisation of the pore-space and is
computed using the following relations: Pore Volume (Vp) / Bulk Volume (Vb) where, 
Vb = (Grain Volume + Pore Volume), i.e.
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6. DISCUSSION
The spherical (sample C) and aspherical (samples A, B, E) with varying degrees of particle
shapes and heterogeneities and aspect ratio of ≈ 1, are virtually isotropic (Table I). As the
aspect ratio increases, the preferential alignment increases resulting in higher hydraulic
anisotropy. Porosity also plays a great role in the manner in which grains are aligned and it
is therefore considered to have a secondary influence on hydraulic anisotropy.

Elongated geometries (F, G) with aspect ratios 2 and 3 have higher Ar compared to the
spherical and aspherical grain packs (samples A, B, C, and E) with aspect ratios 1 
(Figure 8).
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TABLE I Typical anisotropy ratio (Ar) of synthetic granular packs. Kh and Kv are the
horizontal and vertical permeabilities in Darcy (1 Darcy ≈ 1 × 10−12m2), respectively.
Several other Ar of packs A, B, C, E, F, G and H are plotted in Figure 8.

Kh Kv
Sample Φ (Darcy) (Darcy) Ar

A 0.32 46.47 41.37 1.12
A 0.37 73.78 68.81 1.07
B 0.31 55.53 47.5 1.17
B 0.37 137.6 118.6 1.16
C 0.39 150.6 143.5 1.05
E 0.37 9.88 6.23 1.59
F 0.39 95.3 30.2 3.08
G 0.39 91 30.4 2.99
H 0.25 4.06 1.11 3.66
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Figure 8 Plots of anisotropy ratio Ar versus porosity (Φ) for all the measured
samples. Spherical and aspherical geometries with varying degree of
heterogeneities are fairly isotropic; ellipsoidal (R = 2, 3) and lenticular geometries
have decreasing anisotropy. Published data of clay [14] and sand [20] are also
plotted.



6.1. EFFECT OF ORIENTATIONAL ORDER ON HYDRAULIC ANISOTROPY
The possibility of the grains to rotate and rearrange during settling under gravity favours
preferential orientation of the elongated particles. It has been shown [33] that though
particle shape and packing heterogeneity have small but noticeable effects on
permeability, porosity is the most important parameter affecting it. The results of
simulation (Figure 8) clearly show that, for a fixed porosity, the higher the aspect ratio,
the greater the preferential alignment; indicating the influence of grain shape and
preferential alignment on hydraulic anisotropy. Packings with the same degree of
heterogeneity have higher anisotropy at higher aspect ratio. In the bedding plane of
sedimentary rocks, the Ar is usually lower than 1.5 which means that these rocks are
nearly isotropic in that plane while it is usually lower than 4 for clay, with a few
exceptions up to 42 [20]. Few results are available for granular materials, their Ar is not
always higher than 1. Experimental values for sands and gravels are in the range of 0.75
to 4.1.

It is known that Clays, either flocculated or dispersed, have different hydraulic
anisotropies at the same void ratio [14, 47]. Similarly, the same granular material, either
statically or dynamically compacted, has different hydraulic anisotropies at the same
void ratio. The Ar obtained from our simulation for the spherical (e.g. pack C with
regular grains and aspect ratio 1) and aspherical (e.g. packs A, B, E with irregular grains
and aspect ratio 1) geometries are similar to values reported for sands and gravels at high
porosity in [20]. However, the higher values observed for the ellipsoids and lenticular
geometries (e.g. packs F, G, H) suggest that particle shapes and preferential alignment
in the horizontal flow direction have significant influence on the Ar (Figure 9). This
further explains why clays in a ‘loose’ condition like the sensitive clays of Eastern
Canada [21] or Sweden [48] are nearly isotropic, whereas, the over-consolidated
homogeneous London clay has a value close to 2
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of the measured samples.



7. CONCLUSIONS
Direct simulation was carried out on synthetically generated spherical, aspherical, ellipsoidal
(aspect ratio of 2 and 3) and lenticular samples to estimate the degree of anisotropy. As the
porosity of the samples ϕ decreases; the degree of anisotropy increases significantly for the
ellipsoidal (aspect ratio of 2 and 3) and lenticular samples. The spherical and aspherical
geometries of varying degree of heterogeneities are virtually isotropic. Homogeneous
spherical packs appear to be hydraulically isotropic at their highest porosity and their
anisotropy ratio slightly increases when they become more heterogeneous.

The results of the simulation experiments indicate that particle shape and preferential
alignment influence hydraulic anisotropy. Packings with the same degree of heterogeneity
have higher anisotropy at higher aspect ratio. It can therefore be concluded that, as with
geological history, the placement method influences hydraulic anisotropy.
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