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ABSTRACT

This study is aimed to numerically investigate the elastodynamics of a
mono-axial MEMS accelerometer. The vibrating part of the device is
dipped into a fluid micro-channel and made of a proof mass connected to
the frame by two flexible legs. The adopted mathematical model lies on a
linearized motion equations system, where the mass matrix is obtained by
means of both lumped and distributed approach. The stiffness matrix is
otherwise derived through FEA, in which the proof mass and the
compliant legs are modeled as rigid and flexible bodies, respectively. The
squeezed-film damping effect is evaluated by a fluid-dynamical FE model
based on a modified Reynolds formulation. The ensuing analyses are
carried-out for three pressure levels of the narrow gas fim surrounding
the device, by applying the logarithmic decrement method for evaluating
the damping ratio. Numerical results, in terms of acceleration, frequency
range and noise disturbance, are successfully compared to analytical and
experimental ones previously published in literature. Our model
characterizes the accelerometer dynamics in space, allowing, in addition,
to assess translational motion errors along directions apart the working
one.
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1. INTRODUCTION

The architecture of a compliant mechanism is often obtained by the union of different
instances of a same simpler structure rotated and translated in space. In recent years this
class of mechanisms spread in industry because of its ease in manufacturing and
assembling. Flexure mechanisms are one of the main outcome of this fast diffusion. Their
architecture is often monolithic and composed of repeated modules arranged in series or
parallel. Flexures are compliant structures that rely on material elasticity to provide
smooth motion guidance [1], load bearing capability and force transmission: the
application of input forces generates output motion thanks to the deformation of the
material. Unlike traditional linkages, flexure mechanisms are not an assembly of different
bodies coupled by means of joints, but they are fabricated as a monolithic structure not
affected by backlash or friction [2]. Besides, low hysteresis and zero maintenance, due to
the absence of wear, make flexure mechanisms well-suited for: M.E.M.S., N.E.M.S.,
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piezoelectric actuators, sensors, positioning and motion systems and many others
applications requiring miniaturized systems.

In despite of all the said advantages, the flexure mechanisms still suffer from some
limitations such as: small range of motion, variable stiffness along load and motion
directions. Where the former limit is often overcome due to the application to micro- and
nano-systems, the latter introduces error motions affecting precision and accuracy.
Especially for planar flexures, undesired cross-axis and parasitic error motions are often
limited by changing geometry, recurring to symmetric layout, or repositioning the loads.
Exploiting the same strategies to spatial systems is often more difficult and hard to
predict.

Another important requirement is tied to dynamic stability and dynamics response of
flexure mechanisms to be used in MEMS applications as: Accelerometers, STEM (Scanning
Transmission Electron Microscope), AFM (Atomic Force Microscope) or SPM (Scanning
Probe Microscope).

Many studies have been carried out to investigate the dynamics of flexure
mechanisms. From classic papers by Simo and Vu-Quoc [3, 4] on large rotation vector
method, now referred to as Absolute Coordinate Nodal Formulation (ANCF), [3, 4], to
co-rotational formulations as the Floating Frame of Reference Formulation (FFRF), [5],
most of the research is now based on techniques that simplify the large-deflection
nonlinear analysis of flexure mechanism. As instance, the Pseudo-Rigid Body (PRB)
models introduce lumped springs and rigid bodies in order to recur to the existing theory
of rigid body mechanisms, [6, 7, 8]. Other papers are focused on the well- established
FEA theory, [9, 10], while some authors recurred to other techniques as the generalized
multiple shooting method (GMSM) in which dynamic equations with joint boundary
conditions are derived by using Hamilton’s principle and are solved by treating a
boundary value problem as an initial value problem, [11]. In [12] the authors used
Hamilton’s principle combined with Newmark scheme to describe the dynamic model of
a cantilever, which accounts for bending, shear and axial deformations with no geometric
approximation.

In this paper we recur to a linear formulation to study the coupled fluid-dynamical and
structural analysis of a mono-axial MEMS accelerometer. This particular MEMs is a planar
flexure mechanism used to detect acceleration along its axial direction. As already pointed
out in [14], we use the assumption of small displacements, since these “tend to affect
important quantities such as air friction, heat dissipation, and electrostatic forces but
generally have little effect on the inertia and stiffness properties of the mechanism”.

Combining concepts derived from the Matrix Structural Analysis [13] with sub-
structuring techniques the elastodynamics equations of the system are first obtained.
Lumped and distributed formulations for the mass matrix determination are then
investigated. In order to consider the damping effect coming from the fluid-structure
coupling, FEM simulations are performed recurring to a modified Reynolds equation
approach that allows to keep into account the damping effect due to squeezed-film and
slide-film as well. The damping coefficients and the ensuing damping matrices for three
levels of pressure through the use of the Logarithmic Decrement Method are obtained. In
the last section numerical simulations are carried out and compared to previous results
appearing in literature for validation.

The aim of our work is to yield a simple and practical tool to analyze a MEMs mechanism
predicting its motion errors and its dynamic behavior considering different designs or new
operative conditions.
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2. PROBLEM FORMULATION

2.1. DEVICE DESCRIPTION

The geometry of the studied system is reported in Fig. 1. It is made by two main parts, the
first one, outlined in the upper portion of the figure, is the mass proof that is linked to the
mainframe by two flexible lamina springs located at its double-end. The central anchor
body is equipped by several lateral blades that work as electrodes during the devise
functioning. The second part is the mainframe, recognizable in the lower portion of the Fig.
1. It is made by a ribbed baseplate where the previously described component is arranged
in. Geometrical and physical properties are listed in Table I. The constitutive material of the
MEMS is a poly-silicon.

The geometrical coupling between the central body blades and the baseplate ribs
determinates several microchannels filled by air. Micro-channels are filled by air kept at a
chosen pressure. For that reason, when the proof mass moves it interacts with the air-filled
micro-channels, yielding to a dissipation of the vibration. Because of the central body

Figure 1 Geometry of the accelerometer.

Table | Geometrical and physical properties.

Symbol Description Value Unit
L Length of the mass 500 [wm]
[ Length of the blade 120 [wm]
a Length of the electrode 110 [wm]
w Width of the mass 50 [wm]
b Length of the blade 10 [wm]
h Thickness of the blade 2.5 [wm]
t Thickness of the electrode 2 [wm]
n Number of electrodes 54 [-1]
E Young’s Modulus 160 [GPa]
v Poisson’s ratio 0,22 [-]
P Material density 2320 [kg/m?]

v, Volume of the mass 1.07E-15 [m?3]
\" Volume of the blades 2.70E-15 [m3]

[
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stiffness along the longitudinal axis is much lower than any other direction, the outlined
MEMS is a mono-axial accelerometer, having working range of —50/+50 g. Anyway, during
functioning other translations and rotations are not a priori obstructed by any structural
constraints. As a consequence, during motion the main source of damping for such a system
is essentially produced by two phenomena: the squeezed-film damping when the motion is
predominant along the longitudinal direction normal to the electrodes, and the slide-film
damping when the motion is predominant along a tangent direction.

2.2. GOVERNING EQUATIONS AND SOLVING PROCEDURE
The considered classical set of governing equations for elastodynamics study are reported
below:

Mg+ Cppg + Kppqg =0 (D

where M. is the generalized mass matrix, Cp,. is the damping matrix and K is the stiffness
matrix, as well as the 6-dimensional array ¢ of linear and rotational displacements of the
reference point is introduced along with its first and second order time-derivatives. Let first
introduce solving procedures adopted to compute mass and stiffness matrices. The
generalized mass matrix was computed by two different approaches: the first one based on a
lumped formulation in which all masses and inertials are considered to be located at in the
center of mass of the proof mass (i.e. the central mass in our test case). The second one is
otherwise based on a consistent distributed approach. We in fact recurred to a linearized
formulation based on the Matrix Structural Analysis (MSA) for deriving the stiffness and
inertia generalized matrices. In our assumptions the central body is considered as rigid while
the blades are elastic elements modeled as flexible 3D-Euler beams. Small displacements are
further taken into account. Flexible parts are split into beams and connected to the rigid
central body by means of kinematic constraints. Boundary conditions are applied to the end-
beams linked to the frame in order to consider the clamped connection. Details of the applied
method can be found in [15].

Concerning the damping matrix determination, we used a modified Reynolds equation
approach that allows to keep into account the damping effect due to squeezed-film as well as
to the slide-film. It is to notice that application of that fluid-dynamical approach presumes
accomplishment of the following assumptions: i) the fluid has a Newtonian, ideal and
incompressible behavior; ii) the flow is laminar and isothermal; iii) inertia and body forces
are negligible compared to the viscous and pressure forces iv) small variation of pressure are
produced across the fluid film, so that they might be neglected; v) the fluid can be treated as
a continuum and does not slip at the boundaries. The analytical expression of the modified
Reynolds equation is reported below:

(L), 2 @

3
v, (h Qcthtpf - 6nph(u, + ”o,t)) =12n L it dtJ

This equation allows to evaluate the film-pressure variation Py with respect to the
ambient pressure p, in the gap between a mobile wall (electrodes’ walls) and the channel base
(mainframe ribs). The parameter /4 is the height along a direction normal to the mobile wall,
while u, and u,, , are the tangent velocity of the mobile structure and frame, respectively. The
term O, is a function that takes into account gas rarefaction and relative flow-ratio. Damping
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matrix coefficients have been computed by running a coupled fluid-dynamical and structural
numerical model in which the dumping effect is related to the squeezed-film pressure
evaluated by numerically solving eq. (2), as better elucidated in the next section.

2.3. NUMERICAL MODEL

This section is devoted to present the numerical multi-physical FE model built up to solve
the fluid-structure interaction, and to determinate by means of the procedure, discussed in the
following, the damping matrix coefficients. We considered a coupled analysis in order to
exploit the computed pressure fields by the fluid-dynamical analysis as input data for the
structural simulation. On the other hand, structural properties and applied loads to the system
determinate the fluid film pressure. Modelling and simulation has been carried-out by using
the commercial FE-based software Comsol Multiphysics v3.5a [16]. The model was built-up
considering a fixed- fixed constraints at the proof mass ends. From time to time, an impulsive
force lying on the generic Cartesian axis, labeled as x,, was applied at the center of mass of
the proof mass. For each of these simulations, the inertial effect —pd2x /dt* was considered
along the same direction only. To all surfaces orthogonal to the chosen x; direction
(represented in red in Fig. 2), we applied a resistant load whose value corresponds to the
pressure force produced by the squeezed-film. Otherwise, all surfaces collinear to the x;
direction were considered as free boundaries (green surfaces in Fig. 2) and a slide-film
condition is applied for pressure field resolution. Once simulation is carried-out the damping
coefficient for the generic x, translation is evaluated by applying the logarithmic decrement
method to the displacement time history. The recursive application of this procedure for each
translational direction allowed us to estimate the damping matrix coefficients, except for
rotational terms that have been neglected in this study.

From a computational point of view, continuous equations were discretized on no-
structured and no-uniform mesh made of tetrahedral Lagrange elements of order 2. Influence
of spatial discretization has been preliminary checked, in order to assure mesh-independent
results. Finally, a computational grid made giving up to 300,00 degrees of freedom for the
system has been retained for computations. Time-marching was performed by adopting an
Implicit Differential- Algebraic (IDA) solver [17], based on a variable-order and variable-
step-size Backward Differentiation Formulas (BDF). Because the time-marching scheme is
implicit, a nonlinear system of equations was solved each time step by applying a modified

Figure 2 Graphical representation of applied impulsive force along the generic x;
direction (black arrow), point of force application (black filed circle), distributed
force/squeezed-film boundaries (red surfaces) and free/slide-flm boundaries
(green surfaces).
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Newton algorithm based on a discretized linearization by a first-order Taylor expansion.
Algebraic systems of equations coming from differential operators discretization have been
solved by a PARDISO package, a direct solver particularly efficient to solve unsymmetrical
sparse matrixes by a LU decomposition technique.

3. RESULTS

In this section we present results related to the elastodynamic analysis, then we discuss the
effect of the microchannels pressure on damping for the dynamic system. A comparison
between mass matrix determination by using the lumped and distributed approach was firstly
performed. The target has been to establish if the lumped approximation could be considered
reliable in this kind of application. As introduced, the lumped model considers all the moving
mass of the system located on the center of mass of the anchor body. Recurring to the
parameters of Tab. I and denoting with V| and V, the volumes of the central body and one of
the blade group, respectively, we obtain:

m=p(V, +2V,) = 2.61E - 10 [kg] 3)

The moments of inertia are calculated by the following expressions:

I = ém(wz +1%) (4)
i =im(L2+zz) 5)
Y12
L= Lo v (6)
212

thereby, the generalized mass matrix M, as referred to the reference point, is defined as:

EE’

[2,6170e - 10 0 0 0 0 0
0 2,6170e-10 0 0 0 0
0 0 2,6170e-10 0 0 0
My, =
0 0 0 5,4607e - 20 0 0
0 0 0 0 5,0247¢-18 0
0 0 0 0 0 5,0791e - 18 ]

For the distributed approach, recurring to the expression of the mass matrix of a generic
Euler beam and by means of FE method, the 3 x 3 matrix M .. is finally derived, i.e.:

2,4930e - 10 0 0
M,,, = 0 2,4927¢ 10 0
0 0 2,4930e - 10
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In both cases, the computed off-diagonal entries of the mass matrix are null. Moreover,

matrices cross-comparison shows the relative difference of diagonal terms is about 5%, thus

revealing the lumped approach is a good approximation for computing the mass matrix.
The computed stiffness matrix for the system is also reported below:

6,4642 0 0 0 0 -1,7764¢ - 15]
0 9,6368 0 0 0 4,6998¢ - 4
0 0 2,4477 0 -1,1937e¢-4 0
L
0 0 0 1,3497¢ -8 0 0
0 0 ~1,1937¢ -4 0 1,5240e - 7 0
_—1,7764e -15 4,6998¢-4 0 0 0 6,1462¢ -7 ]

Fig. 3-5 report Bode’s diagrams evaluated in terms of magnitude and phase as a function
of frequency. From figures it appears that the system is under-damped along the x- and
y-directions, as revealed observing the peaks of the magnitude Bode’s diagram, while it
behaves as an over-dumped oscillator along the z-direction. The latter condition is
worthwhile to prevent oscillations outside the plane of the accelerometer. Besides, reported
diagrams agree with results presented in [14], where dynamics of a similar device has been
investigated.

Influence of micro-channel pressure on damping has been also investigated. Following
the procedure discussed in the previous section we applied impulsive force in FE model
along each translational direction, run the simulation, recorded time-history of displacement
along the same direction and then used the logarithmic decrement method to assess the
corresponding term in the damping matrix. Fig. 6a-c graphically illustrates the applied
procedure and results obtained for translation along x when pressure in the micro-channels
is chosen to be 30 Pa.
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Figure 3 Bode diagram for the system along the x-direction.
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Figure 4 Bode diagram for the system along the y-direction.
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Figure 5 Bode diagram for the system along the z-direction.

The damping matrix for the different pressure values of air filling the microchannels are
finally presented below:

30 °

S O o o o o
S O o o o O
S O o o o o
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Figure 6 Impulsive force applied to the system, deformed system at a chosen
time instant, time-history of displacement computed along the x-direction for 30 Pa
of pressure in micro-channels.

3,89-107 0 0 0 0 o0
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Where symbols C,, Cy, and Cy, are used to indicate results computed for 30, 300 and
3000 Pa, respectively.
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4. CONCLUSIONS

A numerical multi-physical investigation aimed to analyze system dynamics of an
accelerometer has been carried-out. A coupled fluid-dynamical and structural FE model has
been built up in order to compute the damping matrix for the system. Results presented in
the form of Bode diagrams are in good agreement with reference data previously published
concerning a similar device analysis. The proposed approach allowed to describe the
accelerometer dynamics in the space, permitting to assess translational motion errors along
directions apart the working one (x- direction). The proposed formulation can be used to
analyze the dynamic behavior MEMs mechanisms based on compliant architectures so as to
test different designs or new operative conditions without recurring to the real model. The
simplicity of the method allows for the application of constrained optimization techniques
computationally demanding for a commercial software.
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