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ABSTRACT

We demonstrate an explicit numerical method for accurate calculation of

the scattering matrix and its poles, and apply this method to describe the

multi-channel scattering in the multiple quantum-wells structures. The S-

matrix is continued analytically to the unphysical region of complex energy

values. Results of calculations show that there exist one or more S-matrix

poles, corresponding to the over-barrier resonant states critical for the

effect of the absolute reflection of holes in the energy range where only the

heavy ones may propagate over barriers in a structure. Light- and heavy-

hole states are described by the Luttinger Hamiltonian matrix. In contrast to

the single quantum-well case, at some parameters of a multiple quantum-

wells structure the number of S-matrix poles may exceed that of the

absolute reflection peaks, and at different values of parameters the

absolute reflection peak corresponds to different resonant states. The

imaginary parts of the S-matrix poles and hence the lifetimes of resonant

states as well as the widths of resonant peaks of absolute reflection

depend drastically on the quantum-well potential depth. In the case of

shallow quantum wells there is in fact a long-living over-barrier resonant

hole state. 

1. INTRODUCTION
The multi-channel scattering by quantum-well structures was studied in [1] for particle states
obeying the system of ordinary differential equations 

(1) 

where V(z) is a bounded piecewise analytic potential function with a finite number of
“pieces” (quantum wells), and , ; a, ib, and c are
piecewise constant hermitian n×n matrices; Ψ(z) is the n-component wave function; E is the
energy. At the solution Ψα

in(z) of Eq. (1) has the form (in-state wave incident from
the left)
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where vectors uα are determined from the equation ; vα is the
group velocity: . Similarly for the in-state waves Ψin

−α(z) incident from
the right (in the case V1

± ≠ 0, the quantities in exponents will contain logarithmic “Coulomb”
phases (see [2]), omitted for brevity). The S-matrix component for the channel β → α has
the form: . S-matrix satisfies the unitary condition, namely, S* = S–1

(the symbol * stands for Hermitian conjugation) and the symmetry condition (reciprocity
theorem): Sαβ = S–β,–α. The quantities |Sαβ|

2 give transmission coefficients (when) and
reflection coefficients (when sgn(α) = sgn(β)) and reflection coefficients (sgn(α) = –sgn(β)). 

Our study in the n = 2 case [1], when Eq. (1) describes the rectangular-quantum-well (V(z)
= const < 0 at |z| < d/2, V(z) = 0 elsewhere) two-channel system with two differing masses
(i.e. heavy and light holes in a single semiconductor quantum well), has revealed that within
the range of E: EI < E < EII, where EI, EII > 0 are the eigenvalues of the matrix c, only the
heavy particle may propagate over barriers, and scattering of the heavy particle is of the
curious resonant nature: at various system parameters there are discrete E values of the
absolute reflection, i.e. when |S–H,H|2 = 1. The nature of the states related to such pattern of
scattering can be clarified by examining the analytic properties of the S-matrix [3]. The case
of a single quantum well was discussed in [4]. In this work we generalize our study to the
case of multiple quantum-wells structures.

2. FORMULATION OF THE METHOD
The light- and heavy-hole states in semiconductors are described by the 4×4 Luttinger
Hamiltonian matrix [5]. A unitary transformation [6, 7] block diagonalizes the Hamiltonian
into two 2×2 blocks. We choose the z direction to be perpendicular to the interfaces in the
multiple quantum-wells structure. Then, in the case of symmetric quantum wells, the
Schrödinger equation is reduced to the Eq. (1) with n = 2, and, in the so called axial
approximation (see e.g. [6]),

a = , b = kl ,

(3)

c = kl
2 .

Where kl is the lateral quasi-momentum component (good quantum number): ;
, , are the dimensionless Luttinger

parameters [5]; energy and length are measured in units of and ,
respectively. The realistic range of the parameters under consideration is: 0 ≤ δ << µ < 1. In
what follows, we consider the case of a structure of multiple identical symmetric quantum
wells with the potential V(z) < 0, located at |z| < D/2 where D = Ndw + (N-1) d, N - number
of wells, dw - wells width, d - barriers width, V (z) = 0 at |z| > D/2 (barriers).
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For further study it is convenient to represent Eq. (1) as a first-order equation for a 2n-

component function :

, where , (4)

0̂, and Î are the null and identity n×n matrix, respectively. As it was shown in [1], at k1 ≠ 0,
within the energy range EI < E < EII, where EI,II are eigenvalues of the matrix c [4],

the eigenvalues of the matrix A0, where A0 ≡ A(z) at |z| > D/2 at (in the barriers), read as
follows: iκ, q, –q, –iκ (κ, q > 0), i.e. only the heavy hole may propagate over barriers, and
the channel of conversion of the heavy hole into propagating light hole is closed (light-hole
state is evanescent). In what follows we consider just this energy range where the multiplicity
of the continuous spectrum equals two. In the case under consideration, to the continuous
spectrum corresponds half-infinite interval (Emin,+∞), where Emin equals either the positive
solution of the equation 4det a(E2 – E·tr(c) + det c) = (E·tr(a) + det b – a11c22 – a22c11) or EI
- if δ = 0. Define a 4×4 matrix function Φ(z,E) in the following way: 

1) The first and the third columns of Φ(z,E) are the solutions of the Eq. (4) which equal
at z > D/2 to χ1(E)eiκz and χ3(E)e–qz (κ, q > 0), respectively; 2) The second and the fourth
columns of Φ(z,E) are the solutions of the Eq. (4) which equals at z < –D/2 to χ2(E)e+qz and
χ4(E)e–iκz, respectively; 3) At |z| ≤ D/2, i.e. in the interior of the multiple quantum-wells
structure, the matrix function Φ(z,E) is found by solving apparent Cauchy problems for the
Eq. (4) in each well region (using e.g. the method of reccurent sequences, see [1], [2], [8],
[9]), and imposing the pertinent boundary conditions at each interface. The conventional
boundary conditions consistent with Hermitian character of the Hamiltonian and implying
the continuity of the solutions and of the probability current density (see, e.g. [7]) are used;
4) The same boundary conditions are imposed on the solutions at the points z = ±D/2. 

Here χ1, χ2, χ3 and χ4 are the eigenvectors of the matrix A0 corresponding to the
eigenvalues λ1 = iκ, λ2 = q, λ3 = –q, and λ4 = –iκ(κ,q > 0), respectively. These eigenvectors 

have the form , where uj
*uj = 1. 

It follows from the results of [1] that, within the energy range under consideration,
components of the S-matrix are inversely proportional to det Φ(z,E). Now we set at will a
value of the coordinate z: z = ẑ, and obtain a function of the energy f(E) = det Φ(ẑ ,E) that
should be considered as defined at the upper edge of the interval (EI, EII) of the cut (Emin,+∞),
formed by the continuous spectrum. Then it is possible to make analytic continuation of the
function f(E) downward through this cut to the region of unphysical complex energies of the
half-string EI < Re E < EII, Im E < 0, and its zeroes there correspond to singular points of the
scattering matrix. Since the function f(E) is a product of a positive function, formed of
modules of analytic functions, and of the analytic function g(E), then zero E0 of g(E), lying
immediately downward the continuous spectrum, is a resonance pole of the S-matrix, Re E0
being the energy of the resonant state, –2 Im E0 - the resonant width, and -
resonant state lifetime [3]. The problem of S-matrix poles calculation is reduced to numerical
solving the equation f(E) = 0
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3. RESULTS AND DISCUSSION
The transmission and reflection coefficients were calculated as functions of the over-barrier
energy of incident heavy hole for various parameters of multiple quantum-wells structures,
including realistic material parameters, and lateral quasi-momentum component kl. The
complex values of S-matrix poles energies were calculated as functions of multiple quantum-
wells parameters. Results of calculations show that at all realistic values of parameters there
exist one or more S-matrix poles corresponding to the over-barrier resonant states critical for
the effect of  absolute reflection of the heavy hole in the energy range where only heavy holes
may propagate over barriers in the structure. Real parts of pole energies are within the interval
EI < Re E < EII (Im E < 0) and are close to the energies of the absolute reflection peaks. The
number of over-barrier resonant states and resonant peaks of absolute reflection, as well as
their energies, depends on the widths of quantum wells and barriers, their number, and the
value kl ≠ 0 of the lateral component of quasi-momentum. The values of material parameters
used in calculations of Figures 1, 2 are as follows: γ1 = 14.06, γ2 = 5.398, γ3 = 6.198 (wells
material), γ1 = 11.72, γ2 = 4.421, γ3 = 5.180 (barriers material). These parameters correspond
to structures with InGaAsP/GaxIn1-xAs/InGaAsP quantum wells [7]. The value of the quantum
wells depth used in calculations of Figures 1, 2 equals V(0) = -134.9 meV (x = 0.468 [7]). 

Many-valuedness of the functions in Figures 1, 2 means that there are several S-matrix poles
and respective peaks of the absolute reflection within the energy range EI < Re E < EII, Im E < 0. 

In contrast to the single quantum-well case [4], at some parameters of multiple quantum-
wells structures the number of S-matrix poles lying immediately downward the continuous
spectrum may exceed that of the absolute reflection peaks. This case is illustrated in Figures
1, 2. As it can be seen from Figures 1, 2, the energy of the second peak (with higher energy)
of the absolute reflection is close to the real part of the complex energy of pole 2 or 3 in
different ranges of barriers width d, while the respective imaginary part is comparatively
small, i.e. in these ranges the peak is related to different resonant states. Moreover, at some
values of structure parameters a resonant state may exist whose complex energy has very
small imaginary-part modulus, and real part that is closely set to the energy of the absolute
reflection, i.e. a long-living one (see curve 3 in Figures 1, 2 at d ≈ 2.5 nm).  

Character of scattering, the imaginary parts of S-matrix poles, and hence the lifetimes of
resonant states as well as the widths of resonant peaks of absolute reflection depend
drastically on the quantum-wells potential depth. In the case of sufficiently shallow quantum
wells there is in fact a single long-living over-barrier resonant hole state. When the
magnitude of the quantum-well depth decreases, a residual resonance peak of the absolute
reflection becomes extremely narrow (against the background of almost unity transmission
at all energies except this narrow interval), shifts towards the energy value where the light-
hole channel is opened, and then vanishes. The real part of S-matrix-pole energy almost
coincides with the energy of the absolute reflection. Results of calculations of the
transmission and reflection coefficients as functions of the over-barrier energy of the incident
heavy hole for two strongly differing values of the depth of rectangular wells are
demonstrated in Figures 3 and 4. Material parameters are identical to cited above. The energy
range used in Figure 4 was selected in order to demonstrate the absolute reflection peak:
transmission coefficient is close to unity (and the reflection one – to zero) at any energy value
beyond this range. The energy of the absolute reflection peak in Figure 4 equals 72.4408
meV, that is close to the value 72.4407 meV of the real part of S-matrix pole energy, the
resonance peak width at half-height equals 0.00247 meV, and the value -2 Im E = 0.00246
meV. It should be noted that in contrast to the single quantum-well case [1], at some
parameters of multiple quantum-wells structures reflection coefficient may be close to unity
almost in the whole range EI <  E < EII (see Figure 3).
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Figure 1. Real parts of S-matrix pole energies (solid lines) and energies of the
absolute reflection peak (dots) as functions of barrier width d in a five-quantum-
wells structure; dw = 1.7 nm, kl = 0.3 nm–1; 1 ,2, 3 – pole number.

Figure 2. Imaginary parts of S-matrix pole energies as functions of barriers width d
in a five-quantum-wells structure; dw = 1.7 nm, kl = 0.3 nm–1; 1 ,2, 3 – pole number.

Figure 3. Transmission (1) and reflection (2) coefficients of heavy hole (without
conversion into  light hole) in a five-quantum-wells structure as functions of the
over-barrier energy E; dw = 1.7 nm, d = 1.5 nm, kl = 0.3 nm–1, wells depth V(0) = -
134.9 meV; 3, 4 – reflection and transmission coefficients with conversion into light
hole, respectively.



4. CONCLUSION
An explicit numerical method was demonstrated for accurate calculations of the scattering
matrix, and its poles in the unphysical region of complex energy values, describing the multi-
channel holes scattering in the multiple quantum-wells structures. The results of calculations
showed that at all realistic values of parameters there exists one or more S-matrix poles,
corresponding to the over-barrier resonant states critical for the effect of the absolute
reflection of holes in the energy range where only the heavy ones may propagate over
barriers in the structure. In contrast to the single quantum-well case, at some values of
parameters of multiple quantum-wells structures the number of S-matrix poles may exceed
that of the absolute reflection peaks. In this case at different values of some parameter (e.g.
barriers width) an absolute reflection peak is related to different resonant states. Moreover,
at some values of parameters a resonant state may exist whose complex energy has very
small imaginary-part modulus, and real part that is closely set to the energy of the absolute
reflection, i.e. a long-living one. Character of scattering, the imaginary parts of S-matrix
poles, and hence lifetimes of resonant states as well as widths of resonant peaks of absolute
reflection depend drastically on the quantum-well potential depth. In the case of shallow
quantum wells there is a single long-living over-barrier resonant hole state. The existence of
over-barrier long-living hole resonant states may be one of the reasons for efficient holes
capture by multiple quantum-wells structures.

This work was supported in part by the RFBR.

REFERENCES
[1] Galiev V.I., Kruglov A.N., Polupanov A.F., Goldys E., Tansley T., Multichannel carrier scattering at

quantum-well heterostructures, Semiconductors, 2002, 36 (5), 546-551.

[2] Galiev V.I., Polupanov A.F., Accurate solutions of coupled radial Schrödinger equations, J. Phys. A: Math.
Gen., 1999, 32, 5477-5492.

[3] Bohm A., Quantum Mechanics: Foundations and Applications, Second Edition, Springer-Verlag, New York,
Berlin, Heidelberg, Tokyo, 1986.

[4] Polupanov A.F., Galiev V.I., Kruglov A.N., Int. Jnl. of Multiphysics, 2008, 2 (2), 171-177.

104 The Over-Barrier Resonant States and Multi-Channel Scattering in Multiple Quantum Wells

Figure 4. Transmission (1) and reflection (2) coefficients of a heavy hole (without
conversion into a light hole) as functions of the over-barrier energy E in a five-
quantum-wells structure; dw = 1.7 nm, d = 1.5 nm, kl = 0.3 nm–1, wells depth V(0) = -
15 meV. 



[5] Luttinger J.M., Quantum theory of cyclotron resonance in semiconductors: General theory, Phys. Rev., 1956,
102 (4), 1030-1041.

[6] Broido D.A., Sham L.J., Effective masses of holes at GaAs-AlGaAs heterojunctions, Phys. Rev. B, 1985, 31
(2), 888-892.

[7] Chuang S.L., Efficient band-structure calculations of strained quantum wells, Phys. Rev. B,  1991, 43 (12),
9649-9661.

[8] Polupanov A.F., Energy spectrum and wave functions of an electron in a surface energy well in a
semiconductor, Sov. Phys. Semicond., 1985, 19 (9), 1013- 1015.

[9] Galiev V.I., Polupanov A.F., Shparlinski I.E., On the construction of solutions of systems of linear ordinary
differential equations in the neighbourhood of a regular singularity, Journal of Computational and Applied
Mathematics, 1992, 39, 151 - 163.

Int. Jnl. of Multiphysics Volume 6 · Number 2 · 2012 105




