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ABSTRACT

In this paper, the effect of suspended particles on thermal convection in

Couple-Stress fluid saturating a porous medium is considered. By applying

linear stability theory and normal mode analysis method, a mathematical

theorem is derived which states that the viscoelastic thermal convection at

marginal state, cannot manifest as stationary convection if the thermal

Rayleigh number R, the medium permeability parameter Pl , the couple-

stress parameter F and suspended particles parameter B, satisfy the

inequality
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1. INTRODUCTION
The problem of thermal convection in porous media has attracted considerable interest
during the last few decades, because it has various applications in geophysics, food
processing, soil sciences, ground water hydrology and nuclear reactors etc. A detailed
account of the thermal instability of a Newtonian fluid, under varying assumptions of
hydrodynamics and hydromagnetics has been given by Chandrasekhar [1]. Lapwood [2] has
studied the convective flow in a porous medium using linearized stability theory. The
Rayleigh instability of a thermal boundary layer in flow through a porous medium has been
considered by Wooding [3]. Scanlon and Segel [4] have considered the effect of suspended
particles on the onset of Be′nard convection and found that the critical Rayleigh number was
reduced solely because the heat capacity of the pure gas was supplemented by the particles.
The suspended particles were thus found to destabilize the layer.

In all the above studies, the fluid is considered to be Newtonian. Although the problem of
thermal convection has been extensively investigated for Newtonian fluids, relatively little
attention has been devoted to this problem with non-Newtonian fluids. With the growing
importance of non-Newtonian fluids with suspended particles in modern technology and
industries, the investigations on such fluids are desirable. One such type of fluid is couple-
stress fluid. Stokes [5] proposed and postulated the theory of couple-stress fluid. One of the
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applications of couple-stress fluid is its use to the study of the mechanism of lubrication of
synovial joints, which has become the object of scientific research. A human joint is a
dynamically loaded bearing which has articular cartilage as the bearing and synovial fluid as
lubricant. When fluid film is generated, squeeze film action is capable of providing
considerable protection to the cartilage surface. The shoulder, knee, hip and ankle joints are
the loaded-bearing synovial joints of human body and these joints have low-friction
coefficient and negligible wear. Normal synovial fluid is clear or yellowish and is a viscous,
non-Newtonian fluid. 

According to the theory of Stokes [5], couple-stresses are found to appear in noticeable
magnitude in fluids very large molecules. Since the long chain hylauronic acid molecules are
found as additives in synovial fluid. Walicki and Walicka [6] modeled synovial fluid as
couple-stress fluid in human joints. Sharma and Sharma [7] have studied the couple-stress
fluid heated from below in porous medium.

The investigation in porous media has been started with the simple Darcy model and
gradually was extended to Darcy-Brinkman model. A good account of convection problems
in a porous medium is given by Vafai and Hadim [8], Ingham and Pop [9] and Nield and
Bejan [10]. Sharma and Rana [11] have studied thermal instability of a incompressible
Walters’ (model B′ ) elastico-viscous in the presence of variable gravity field and rotation in
porous medium whereas Rana and Kumar [12] studied thermal instability of Rivlin-Ericksen
elastico-viscous rotating fluid permitted with suspended particles and variable gravity field
in porous medium. Recently, Kumar [13] studied stability of stratified couple-stress dusty
fluid in the presence of magnetic field through porous medium whereas Rana and Sharma
[14] studied hydromagnetic thermosolutal instability of compressible Walters’ (model B′)
rotating fluid permeated with suspended particles in porous medium.

The interest for investigations of non-Newtonian fluids is also motivated by a wide range
of engineering applications which include ground pollutions by chemicals which are non-
Newtonian like lubricants and polymers and in the treatment of sewage sludge in drying
beds. Recently, polymers are used in agriculture, communications appliances and in bio
medical applications. Examples of these applications are filtration processes, packed bed
reactors, insulation system, ceramic processing, enhanced oil recovery, chromatography etc.

Keeping in mind the importance in various applications mentioned above, our interest, in
the present paper is to study the effect of suspended particles on thermal instability of
incompressible couple-stress elastico-viscous fluid in a porous medium. 

2. MATHEMATICAL MODEL AND PERTURBATION EQUATIONS
Here, we consider an infinite, horizontal, incompressible couple-stress viscoelastic fluid of
depth d, bounded by the planes z = 0 and z = d in an isotropic and homogeneous medium of
porosity ε and permeability k1, which is acted upon by gravity g(0, 0, -g). This layer is heated

from below such that a steady adverse temperature gradient is maintained. The

character of equilibrium of this initial static state is determined by supposing that the system
is slightly disturbed and then following its further evolution.

Let ρ, υ, µc, p, ε, T, α and ν(0, 0, 0), denote respectively, the density, kinematic viscosity,
couple-stress viscosity, pressure, medium porosity, temperature, thermal coefficient of
expansion and velocity of the fluid. 

The equations expressing the conservation of momentum, mass, temperature and equation
of state for couple-stress fluid in a porous medium (Chandrasekhar [1], Sharma and Sharma
[11], Kumar [13]) are

β =








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dz
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(1)

∇ . v = 0, (2)

(3)

(4)

where the suffix zero refers to values at the reference level z = 0.
Here vd (x–, t) and N (x–, t) denote the velocity and number density of the particles

respectively, K′ = 6πηρ�, where η is particle radius, is the Stokes drag coefficient,
vd = (l, r, s) and x– = (x, y, z).

which is constant, κ is the thermal diffusivity, ρs, Cs; ρ0, Cf denote the density and heat
capacity of solid (porous) matrix and fluid, respectively. 

If mN is the mass of particles per unit volume, then the equations of motion and continuity
for the particles are
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(5)

(6)

The presence of particles adds an extra force term proportional to the velocity difference
between particles and fluid and appears in the equation of motion (1). Since the force exerted
by the fluid on the particles is equal and opposite to that exerted by the particles on the fluid,
there must be an extra force term, equal in magnitude but opposite in sign, in the equations
of motion for the particles (5). The buoyancy force on the particles is neglected.
Interparticles reactions are not considered either since we assume that the distance between
the particles are quite large compared with their diameters. These assumptions have been
used in writing the equations of motion (5) for the particles.

The initial state of the system is taken to be quiescent layer (no settling) with a uniform
particle distribution number. The initial state is 

(7)

is an exact solution to the governing equations.
Let v(u,v,w), θ, δp and δρ denote, respectively, the perturbations in fluid velocity v(0,0,0),

temperature T, pressure p and density ρ.
The change in density δρ caused by perturbation θ in temperature is given by 

δρ = −αρ0θ. (8)

The linearized perturbation equations governing the motion of fluid are 

(9)

∇ . v = 0, (10)

(11)

where and w, s are the vertical fluid and particles velocity.

In the Cartesian form, equations (9)–(11) with the help of equation (8) can be expressed
as
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(12)

(13)

(14) 

(15)

(16)

Operating equation (12) and (13) by and respectively, adding and using equation

(15), we get

(17)

Operating equation (14) and (17) by and respectively and adding to

eliminate δρ between equations (14) and (17), we get
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3. NORMAL MODE ANALYSIS
Following the normal mode analyses, we assume that the perturbation quantities have x, y
and t dependence of the form

(19)

where l and m are the wave numbers in the x and y directions, k = (l2 + m2)½ is the resultant
wave number and n is the frequency of the harmonic disturbance, which is, in general, a
complex constant.

Using expression (19) in equations (18) and (16) become

(20)

(21) 

Equation (20) and (21) in non-dimensional form, become

(22)

(23)

where we have put

and is the dimensionless

medium permeability, is the thermal Prandtl number, B = 1 + b, is the suspended 

particles density parameter, is the couple-stress parameter and 

and dropping * for convenience.

Substituting W = W* and in equations (22) and (23) and dropping * for

convenience, we obtain
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(24)

(25)

where is the thermal Rayleigh number.

Here we assume that the temperature at the boundaries is kept fixed, the fluid layer is
confined between two boundaries and adjoining medium is electrically non-conducting. The
boundary conditions appropriate to the problem are (Chandrasekhar [1])

W = D2W = Θ = 0 at z = 0 and 1. (26)

Then, we prove the following theorem:

THEOREM: If R > 0, F > 0, B = 1 + b, b > 0 and σ = 0, then the necessary condition for
the existence of non-trivial solution (W, Θ) of equations (24) and (25) together with the
boundary conditions (26) is that 

PROOF: If the instability sets in stationary convection and ‘principle of exchange of
stability’ is valid, the neutral or marginal state will be characterized by σ = 0. Thus the
relevant governing equations (24) and (25) reduces to

(27)
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together with the boundary conditions (26).
Multiplying equation (27) by W* (the complex conjugate of W) throughout and integrating

the resulting equation over the vertical range of z, we get
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Taking complex conjugate on both sides of equation (28), we get

(30)

Using equation (30) in the right hand side of equation (29), we obtain

(31)

Integrating term by term on both sides of equation (31) for an appropriate number of times
by making use of boundary conditions (26), we obtain

(32)
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inequality [9]
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(by using Cauchy-Schwartz inequality) (36)

Thus, inequalities (34) can be written as
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Since the minimum value of is 4π4 at a2 = π2 > 0, hence, we necessarily have

(42)

which completes the proof of the theorem.
From physical point of view, the above theorem states that the onset of instability at

marginal state in a couple-stress fluid heated from below permeated with suspended particles
in porous medium cannot manifest as stationary convection, if the thermal Rayleigh number
R, the couple-stress parameter F, medium permeability and suspended particles number
density B, satisfy the inequality 

(43)

4. CONCLUSION
The effect of suspended particles on thermal convection in couple-stress fluid in a porous
medium has been investigated. From the above theorem, the main conclusions are as follows:

(i) The necessary condition for the onset of instability as stationary convection for
couple-stress elastico-viscous fluid is 

(ii) The sufficient condition for non-existence of stationary convection at marginal state is

(iii) In the inequality (39), The thermal Rayleigh number R > 0, is directly proportional
to the couple-stress parameter F. Thus, couple-stress parameter has stabilizing effect
on the system as derived by Sharma and Sharma [7] and Kumar [13].

(iv) In the inequality (39), the thermal Rayleigh number R > 0, is inversely proportional
to the suspended particles number density parameter B, which mathematically
established the destabilizing effect of suspended particles number density parameter
on the system as derived by Scanlon and Segel [4], Rana and Kumar [12], Rana and
Sharma [14] and Kumar [13].

(v) The medium permeability has a destabilizing effect on the system as can be seen
from inequality (39), which is an agreement with the earlier work of Sharma and
Sharma [7], Rana and Kumar [12], Rana and Sharma [14] and Kumar [13].

R
F

BPl

≤ 4 4π

R
F

BPl

> 4 4π
.

R
F

BPl

≤ 4 4π

R
F

BPl

> 4 4π
,

π π2 2 2
2

2

+( )a

a

70 A mathematical theorem on the onset of Couple-Stress fluid permeated with suspended dust
particles saturating a porous medium



REFERENCES
[1] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York,

1981.

[2] Lapwood, E. R., Convection of a fluid in porous medium, Proc. Camb. Phil. Soc., 1948, 44,

508–519.

[3] Wooding, R. A., Rayleigh instability of a thermal boundary layer in flow through a porous

medium, J. Fluid Mech., 1960, 9, 183–192. 

[4] Scanlon, J. W. and Segel, L. A., Effect of suspended particles on the onset of Be′nard convection,

Physics Fluids, 1973, 16, 1573–78.

[5] Stokes, V. K., Couple-stress in fluids, Phys. Fluids, 1966, 9, 1709–1715.

[6] Walicki, E. and Walicka, A., Inertial effect in the squeeze film of couple-stress fluids in biological

bearings, Int. J. Appl. Mech. Engg., 1999, 4, 363–373. 

[7] Sharma, R. C. and Sharma, M., Effect of suspended particles on couple-stress fluid in the

presence of rotation and magnetic field, J. pure Appl. Math., 2004, 35, 973–989.

[8] Ingham, D. and Pop, L. Transport Phenomena in Porous Media, Elsevier, New York 1981.

[9] Nield, D. A. and Bejan, A., Convection in Porous Medium, Springer, New York, 2006.

[10] Vafai, K. and Hadim, H. A., Hand Book of Porous Media, M. Decker, New York, 2000.

[11] Sharma, V. and Rana, G. C., Thermal instability of a Walters’ (model B′) elastico-viscous fluid in

the presence of variable gravity field and rotation in porous medium, J. Non-Equilib. Thermodyn.,

2001, 26, 31–40.

[12] Rana, G. C. and Kumar, S., Thermal instability of Rivlin-Ericksen Elastico-Viscous rotating fluid

permitted with suspended particles and variable gravity field in porous medium, Studia

Geotechnica et Mechanica, 2010, XXXII, 39–54.

[13] Kumar, V., Stability of stratified couple-stress dusty fluid in the presence of magnetic field

through porous medium, Appl. and Appl. Math., 2011, 6, 510–521.

[14] Rana, G. C. and Sharma, V., Hydromagnetic thermosolutal instability of compressible Walters’

(model B′) rotating fluid permeated with suspended particles in porous medium, Int. J. of

Multiphysics, 2011, 5, 325-338.

NOMENCLATURE
F Couple-Stress parameter
Pl Dimensionless medium permeability
g Gravitational acceleration
g Gravitational acceleration vector
m Mass of suspended particle
p Pressure 
K′ Stokes drag coefficient
N Suspended particle number density
Pr Thermal Prandtl number
v Velocity of fluid
vd Velocity of suspended particles
k Wave number of disturbance
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Greek Symbols
β Adverse temperature gradient 
µc Couple-Stress viscosity
ρ Fluid density
µ Fluid viscosity
v Kinematic viscosity
ε Medium porosity
δ Perturbation in respective physical quantity
θ Perturbation in temperature
η Radius of suspended particles 
κ Thermal diffusitivity 
α Thermal coefficient of expansion
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