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ABSTRACT

We present an approach to the computation of electromagnetic wave

propagation through a dielectric thin film medium using iterative scheme.

We used the Green’s function technique involving some necessary

boundary condition to solve the scalar wave equation. Non-vectorial

aspects of the propagating wave through the thin film resulting from the

film orientation were considered. The iterative numerical scheme based on

the parallel use of Lippmann-Schwinger and Dyson’s equations is

demonstrated and used judiciously in the computation. The influence of the

numerical parameters such as Green’s function, thickness of the thin film,

dielectric perturbation, ∆εp(z) and mesh size, Np on the propagating wave

for three region of electromagnetic wave were clearly assessed.

Keywords: Iterative Scheme, Lippmann-Schwinger Equation, Dyson’s

equation, electromagnetic wave, Thin film, dielectric medium, Green’s

function, computation, wave equation, and discretization 

1. INTRODUCTION
For long, significant work and progress had been made in the area of beam propagation
method of electromagnetic wave propagation through materials [Feit and Fleck 19978, 1979,
1980]. And since then the assessment of its applicability [van-Roey et al, 1981,
Thyle/n1982], the method has really became the most widely used technique of modeling
integrated optics. Though the method based on this concept had its deficiency due to the
vectoral nature involved in electromagnetic wave propagation, based on the fact that
development of the beam propagation method had two directions. One being with the view
of overcoming the limitation of the paraxial approximation [Chu and chaudhuri, 1989;
Yevick and Glasner, 1990] in which the attention was to device an exact solution of the scalar
wave. The second approach was in a case where the semivectorial method was applied in
which the treatment of various components of the electric field were considered
simultaneously, but not the coupling among these components[Splett et al,1991, Stern,1991]
After these development, vectorial method that involved modeling of vectorial effects such
as polarization within the limited frame work the paraxial approximation was evolved
[Claudberg et al, 1991, Huang et al, 1991,Martin et al, 1991, Chung et al1991, Liu and
Gomelsky, 1992, Huang et al 1992]. Another approach was also proposed to demonstrate a
simpler method could be to solve exactly the wave equation for arbitrary dielectric
media.[Martin et al 1994]. Recently computation of field propagation through an
inhomogeneous thin film medium been demonstrated in which the influence of dielectric
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function and small change in refractive index of the thin film medium was studied [Ugwu,
2011and Ugwu et al 2007] with the problem the direct numerical integration due to the
implicit nature of the key equations were pointed out. In this paper therefore, we propose an
approach to overcome this problem which is based on iterative scheme on Green’s function,
Lippmann-Schwinger and Dyson’s equations to be involved in order to solve for the field
propagation through a dielectric thin film medium. In this case, we first of all obtain the
Green’s function associated with the scalar wave equation and use it to spell out the value of
the field propagating through the thin film that involves Lippmann-Schwinger equation and
its counterpart, Dyson’s equation which in each case is being iterated for use in obtaining the
field profile through the film.

1.1. THEORETICAL PROCEDURE
The aim here is to find the solution ψ(z) of the scalar wave equation given as 

(1)

For an arbitrary complex dielectric medium εp(z) of the homogeneous thin film medium, we
assume that it is split into two parts: a homogeneous reference part of dielectric constant, εref

and a perturbed part confined inside the thin film medium. Hence the dielectric function of
the system can be expressed as 

(2)

The assumption strictly depends on the nature of the medium being investigated. With equation
(2), equation (1) can be written as 

(3)

Where we define the term, V(z) containing the dielectric perturbation, ∆εp(z) as

V(z) = (4)

with k 2
o = µ0ε0ω0

We now write equation (3) thus

(5) 

if we consider the as a source function f �(z) 
The Green’s function associated to equation (5) is 

(6)

The solution of equation (6) is given as 
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To eliminate the arbitrary constants, must satisfy a given boundary condition that G(z,0)

= G(z,a) Coupled with the fact that at z = z�, the derivative of must be continuous.
This will now lead the solution to be 

(8)

Having obtained the Green’s function associated with the problem, the solution of the
inhomogeneous equation becomes

(9)

Based on this, we now spell out the total field propagation through the thin film

[Martin et al, 1994] (10)

This is known as the integral form of Lippmann-Schwinger equation whose counterpart,
Dyson’s equation is given as

[GAO, 2005; Ugwu, 2011](11)

This equation is meant for use in iterating Green’s function, G(z,z�) over the thin film
medium for subsequent use in equation (10) in order to obtain the value of the propagating
field, ψ(z) over the same thin film medium. Because of the implicit nature of these equations
(10) and (11), a grid is defined over the system in which discretization procedure preferably
variable Gaussian grid, ∆k is applied on the deposited thin film. We suppose that the
discretized system contains N meshes from which Np describes the perturbation (Np�N).
We designate the discretized field the Green operator and the perturbation by ,
respectively. The discretized form of equations (10) and (11) are 

(12)

(13)

However the direct numerical resolution of equation (12) is particularly time consuming and
lead to numerical instabilities because of the singular behaviour of result of this, an
iterative scheme for computing the field propagating through the film is carried out by
introduction of the Dyson’s equation as already stated in equation (11) and (13) as it yields
the Green’s function, of the homogeneous reference system.[Martin et al, 1994].
By applying this scheme, the number of operations and the size of the matrix 
quired for every step can be clearly spelt out, For instance for three meshes we have
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Equation (i) to (ix) represent equation (14) that are the nine algebraic equations, that will lead
to nine values of Gi,j as given below 

G1,1, G1,2, G1,3, G2,1 G2,2 G3,2 G1,3 G23 G3,3 .

Equation (14) is written in a compact matrix form as shown in equation (16) and from that
the algebraic equation corresponding to ψi are obtained thus
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These equations could be written in a compact matrix form as in the equation below. 
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of which the corresponding field matrix counterpart from algebraic equation (15) is given
below.
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Based on this we used five and eight meshes in our solution respectively and we were able to
obtain five and eight values of field respectively that enable us to obtain the result as shown in
the Figures 1 to 6

2. RESULT AND DISCUSSION
Discretized form of Lippmann-Schwinger equation and its counterpart, Dyson’s equation as
shown in equation [12] and [13] were introduced based on the fact that the numerical
approximation involved in handling [12] and [13] were easier due to the difficulty imposed by
direct integration of equations [10] and [11] because of their implicit nature. The mesh size,
∆k and the discretized format, N meshes introduced in formulation enhanced the computation.
For instance, the number of processes involved in the computation of the field, Ψi depends on
the number of the meshes considered. When Np meshes are considered out of N, N algebraic
equations interms of Green’s function, Gi,j are obtained which in turn lead N�N matrix. The
computed Green’s function are used in equation [12] to obtain the value of the field, Ψi. as
shown in Fig. 1 to Fig. 6. The result show that Fig. 1 and Fig. 2 and Fig. 3 depict variation of
Green, s Function, Gi,j against the field, Ψi has positive correlation 0f 0.993,and 0.944for
visible and ultraviolet region of electromagnetic wave for Np=5 and 8 respectively. While for
infrared as shown in Fig. 3, the correlation is negative, �0.985 for Np = 8. The field variation
with both thickness and wavelength for Np = 5 and 8 were seen to be 0.596, 0.993 as shown
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Figure 1: Variation of Green’s function Gi,j (y1)gainst Field value, ψi,(x1) for ultraviolet
region of Electromagnetic wave when N

p = 5
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Figure 2: Variation of Green’s function, G
i,j
(y2) against Field value ψi,(x2) for visible

region of Electromagnetic wave when Np = 8
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Figure 3: Variation of Green’s function G
i,j

(y3)against Field value = ψi,(x3) for infrared
region of Electromagnetic wave when Np = 8

y4

x4
0 1 2 3

0

500

1000

Figure 4: Variation of Green function Gi,j ( y4) against Field value, ψi, (x4) for infrared
region of Electromagnetic wave when Np = 5
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Figure 5: Variation Field value ψi,(y5) against wavelength λµm ( x5) When Np = 5
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Figure 6: Variation of perturbation V(z) (y6) against wavelength λµm (x6), when N
p
= 5



in Fig. 4 and 5 respectively. While that of Fig. 6 that relates Perturbation, V(z) and Wavelength
for Np = 5 depicts negative correlation

3. CONCLUSION
We have presented an approach to the computation of field propagation in dielectric thin film
medium known as iterative scheme involving the use of Green’s Function technique.
Lippmann-Schwinger equation and its counterpart Dyson’ equation was used to obtain the
solution of the wave equation. In this approach, unlike the case of direct integration, no
approximation as a result of the implicit nature of the equation was invoked because of the
introduction of the discretization terms. The influence of the numerical parameters such as
dielectric perturbation and number of meshes on the Green’s function correlation on Field
value was examined. Finally, the iterative scheme based on the parallel use of Lippmann-
Schwinger and Dyson’ equation were judiciously used and found to be useful in the
computation
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