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ABSTRACT

Contact forces between two spheres are computed, including the contact

pressure (normal) and the frictional stress (tangential) using a finite element

method (FEM). A CAD model of a part of a sphere was developed. A mesh

was created using ANSYS® Solid 186, 20-Noded hexahedral element and

analyzed for its sensitivity. ANSYS® Contact 174 and Target 170, 8-Noded

surface elements were used. Contact pressure and frictional stress

contours were calculated by varying the displacements. Normal and

Tangential contact forces were computed by integrating contact pressure

and frictional stress over the contact surface. The values obtained for the

normal force were compared with the non-linear spring model as given by

Hertz [1]. Similarly values of the tangential force were compared with the

model of Mindlin and Deresiewicz (MD) [2]. The FEM results were found to

be in agreement with the models.

INTRODUCTION
There are two components of the contact force: (1) the normal contact force and (2) the
tangential contact force. The normal contact force arises from the normal overlap of particles
as given in Figure 1. Hertz [1] model has certain limitations as highlighted by Johnson [3].
The assumptions made in the Hertz [1] model are as follows:

• The surfaces are continuous and non conforming
• The strains are small
• Each solid can be considered as an elastic half-space
• The surfaces are frictionless

The normal contact force between spherical particles is given by Hertz [1] based on theory
of classical mechanics. For two spheres in contact with radii, R1 and R2, and relative normal
displacement, 2a, the radius of contact area, c, is given by 
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Where the Equivalent Young’s modulus ‘E*’ is

(3)

And R* is

(4)

The normal traction p, i.e. the distribution of pressure on the contact area, is given by  

(5)

Where r is the distance from the centre of the contact area, and po is the maximum normal
pressure, which can be calculated using Eqn. 6.

(6)

MD [2] studied the frictional forces using classical mechanics during contact and developed
relations which are not only dependent on the current loading state but also on the history of
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Figure 1 Normal contact of spheres (reproduced from Zhang and Quoc [4]).



the loading. The main assumptions highlighted by MD [2] are given as follows:

• The normal force and contact area are computed using the model given by Hertz [1]
• Whenever there is change in normal traction it is accompanied by change in

tangential traction, and if the change is more than the product of the coefficient of
friction and normal traction, slip will occur

• The annulus of slip progresses concentrically inwards 
• When slip occurs, then the product of normal traction and the coefficient of friction

will be equal to tangential traction.
• Contact parameters are computable if every previous step of loading is known from

the equilibrium state

Figure 2 shows the tangential contact between spherical particles. Denoting the tangential
displacement of particle 1 and 2 as d1 and d2 respectively, tangential force felt by each sphere
due to contact is Q. An expression for Q is given in Eqn. 7.

There are number of cases that have been considered by MD [2] to calculate the tangential
forces during contact. All these cases vary based on the loading history. Zhang and Quoc [4]
have simplified the MD [2] model based on a simple loading history and considered the
following cases.

• Normal force is constant
• Tangential force is increasing 
• Tangential force is decreasing
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Figure 2 Normal & tangential contact of spheres (reproduced from Zhang and
Quoc [4]).
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• Normal force is increasing 
• Tangential force is increasing
• Tangential force is decreasing

• Normal force is decreasing 
• Tangential force is increasing
• Tangential force is decreasing 

In all cases given above, it is possible to calculate the change in the tangential force using a
spring constant, which differs between cases, as

Q′ = Q +− KT∆d (7)

Where Q′ is the tangential force after and Q is the tangential force before tangential displacment
∆d = |d1 − d2|, KT is the tangential spring constant (varies based on loading cases).

Under different scenarios of loading and unloading as discussed above; the tangential force
non-linear spring constants can be computed. Figure 3 shows the relationships of non-linear
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Figure 3 Variation of tangential force with tangential displacement; normal
force constant, tangential force increasing and decreasing (reproduced from
Zhang and Quoc [4]).
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spring constants when normal force is constant. O is the point of zero tangential loading. A is
the maximum tangential loading in unit direction. B shows the point of zero tangential force
but non-zero tangential displacement. C is the point of zero tangential displacement and non-
zero tangential force. D shows the point of negative tangential force (opposite direction in
1-D) equivalent to point A. E is tangential force above A but in negative direction. F shows
the point of positive recovery from maximum negative loading. The values of spring constants
between each location of loading are shown in Figure 3. KT,0 is constant based on material
properties as given in Eqn. 8.

(8)

Where v is the Poisson ratio and G is the Shear Modulus of the material and m is the
coefficient of friction. 

Similarly, Walten and Braun [5] presented a simplified model for normal and tangential
contact of spheres. The advantage of using this model is the computational efficiency where
there is no need to store the contact history which is required otherwise, hence accuracy is
compromised. 

Thornton [6] presented a simplified relation of measuring tangential force based on MD
[2]. This model is true for loading, unloading and reloading conditions. Moreover, Thornton
[6] model also suggests how to compute the contact forces in 2-D contact. They have
presented a displacement vector model to keep track of tangential direction, which may
change as the particle moves.

In order to study the tangential force displacements model in detail, FEM analysis was
conducted. For this purpose FEM model was built and solved using ANSYS® FEM
commercial package [7, 8], where the Augmented Lagrangian method [3, 10, 11] is used to
compute the contact pressure and Coulomb law of friction [3, 10, 11] is used to compute
frictional stress. Within the material, a linear static analysis has been performed.

Vu-Quoc, Zhang and Lesburg [9] have also presented the FEM analysis of spheres in
contact using the ABAQUS® FEM commercial package for FEM analysis. They built a 
2-D model for analysis and applied forces as initial conditions. In this study, a 3-D model
of a sphere has been built and analyzed with the displacements as initial conditions. 

FINITE ELEMENT MODELING
Figure 4 and figure 5 shows the CAD and FEM model built using ANSYS®
Multiphysics. Solid 186, 20-noded hexahedral elements were used for the analysis based
on the recommendation for non-linear analysis in ANSYS® Technical Manuals [9].
Targe 174 8-noded quadrilateral target and Contac 170 8-noded quadrilateral contact
elements were used for capturing contact variables. Problem specifications are shown in
Table 1.

FEM mesh sensitivity tests were carried out to insure the quality of results.

FE LOADS AND BOUNDARY CONDITIONS
One part of spheres was constrained to zero displacements and other part was displaced to
initiate the contact as shown in Figure 6. The values of normal and tangential displacements
were controlled as per the loadings conditions as given in Figure 7.

As shown in above Figure 5 loads (initial conditions) are applied. Each load is initiated
from quasi-static state of the FEM model. 

K cT,0  = 8 +
G1 G2
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Figure 5 FEM model of 2 parts of spheres in contact; figure 6 shows the point of
contact and boundary conditions applied.
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Figure 4 CAD model of sphere; blue region represent the part of sphere taken for
FEM modelling.



RESULTS AND DISCUSSION
Contact pressure and frictional stress were integrated over the areas to compute the net normal
and tangential forces. Normal forces were calculated using the model given by Hertz [1] as
described in Eqns. 1 to 6. Similarly, tangential contact force is computed using the MD [2]
model using Eqns. 7 and 8 and loading spring constant given by Zhang and Quoc [4].
Comparison within normal and tangential force results is shown in Figure 8 and 9 respectively.
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Figure 7 Normal and tangential loadings (displacements (µm)) of contacting
spheres.
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Figure 6 Boundary conditions applied on contact sphere FEM model; curvature at
point of contact is not according to scale.
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Table 1 Specification of the Contact Problem

Parameter Values
Radius of Sphere 0.1 m
Modulus of Elasticity 70 GPa
Poisson Ratio 0.3
Coefficient of Friction 0.2
Solid Element Solid 186, 20-Noded Hexahedral Solid Element
Contact Element Contac 174, 8-Noded Surface to Surface Quadrilateral 3-D

Contact Element
Target Element Targe 170, 8-Noded Surface to Surface Quadrilateral 3-D 

Target Element



As shown in Figure 8, FEM results for the normal force are in agreement with the
expression of Hertz [1] as given Eqns. 1 to 6.

As shown in Figure 9, FEM results are in agreement with MD [2] tangential force contact
model.

The normal pressure contour plot, tangential stress contour plot and contact status, at
loading position 5 as given in Figure 7 are shown in Figure 10, 11 and 12 respectively.

The contact pressure distribution can be computed using equations 1 to 6. At 17 µm of
relative normal displacement of spheres; according to Hertz [1] model maximum contact
pressure po is 581 MPa and FEM results gave the maximum stress of 585 MPa as shown in
figure 10. Similar results were obtained for various loading conditions. This proves that FEM
results are in good agreement with the Hertz [1] normal force model.

The MD [2] model assumes that the tangential stress distribution is axis-symmetric, in
contrast to that found from the FEM analysis shown in Figure 11. In order to investigate it
further contact status has been plotted as given in Figure 12.
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Figure 9 Tangential force due to normal and tangential contact of spheres.

Figure 8 Normal force due to normal contact of spheres.
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Figure 10 Contact pressure contour plot (MPa) for FEM load position 5. The area
of contact has pressure > 0.
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Figure 11 Frictional stress contour plot (MPa) for the FEM load position 5.



The contact status differentiates between stick and sliding regions. It is well-understood
that frictional force is equal to coefficient of friction times the normal force in the sliding
region whereas in the stick region its value has to be computed by tangential force models
as discussed in section 2. It has been found that contact status is axisymmetric. In addition,
it has been observed that frictional stress contours are axisymmetric in the sliding region
(figure 11) and equal to the value of the pressure distribution (figure 10) multiplied with
the coefficient of friction. In the non-stick region frictional stress contours are found to be
non-axisymmetric.

According to MD [2] model maximum frictional stress is at the boundary of sticking
and sliding region, which has also been found to be untrue as frictional stress distribution
is non-axis-symmetric.

CONCLUSION
The Hertz [1] model for normal contact force has been validated using finite element
methods using displacement as loading condition. Normal contact pressure distribution via
finite element methods has been found match the parabolic relation given by Hertz [1].    

MD [2] tangential force model and its derivatives as given in literature by Thornton [6]
and Zhang and Quoc [4] have been validated using finite element methods. Despite the fact
that the values for the tangential force are found to be in agreement with the theory, there is
a mismatch in tangential stress distribution which requires further investigation. 
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Figure 12 Contact status for the FEM load position 5.
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