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ABSTRACT

This paper describes the usefulness of Lagrangian and arbitrary
Lagrangian/Eulerian (ALE) methods in simulating the gun launch dynamics
of a generic artillery component subjected to launch simulation in an air gun
test. Lagrangian and ALE methods are used to simulate the impact
mitigation environment in which the kinetic energy of a projectile is absorbed
by the crushing of aluminum honeycomb mitigator. In order to solve the
problem due to high impact penetration, a new fluid structure coupling
algorithm is developed and implemented in LS-DYNA, a three dimensional
FEM code. The fluid structure coupling algorithm used in this paper
combined with ALE formulation for the aluminum honeycomb mitigator
allows to solve problems for which the contact algorithm in the Lagrangian
calculation fails due to high mesh distortion. The numerical method used for
the fluid and fluid structure coupling is discussed. A new coupling method is
used in order to prevent mesh distortion. Issues related to the effectiveness
of these methods in simulating a high degree of distortion of Aluminum
honeycomb mitigator with the commonly used material models (metallic
honeycomb and crushable foam) are discussed. Both computational
methods lead to the same prediction for the deceleration of the test
projectile and are able to simulate the behavior of the projectile. Good
agreement between the test results and the predicted projectile response
is achieved via the presented models and the methods employed.
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1. INTRODUCTION

An air gun test provides an efficient and effective launch simulation platform in which the
shock phenomena in a real gun test are replicated in a controlled environment. The primary
focus of such an air gun mitigation test is to simulate a transient shock environment that the
test projectile is anticipated to encounter in an actual field test. Proper simulation of the gun
launch environment via an air gun test requires a thorough understanding of the dynamics of
the physical energy-absorbing interfacing components that regulate its shock environment.
An analytical model in this regard could play a vital role in facilitating design and
preparation of an effective air gun test. The ability to numerically simulate the dynamic
response of the test projectile will allow the physical operating parameters of the air gun test
environment to be tuned to achieve the specific dynamic profile for which the projectile has
been tested. This methodology requires the development of a predictive model of responses
of the test projectile. This paper presents the development of a finite-element (FE) model to
simulate the dynamic impact response of a generic artillery component mounted on a given
projectile during gun launch simulation in an air gun test.

Several LS-DYNA models of a generic test article fired in a 101.6-mm (4-in.) air gun
chamber are developed in this study. Control test data for a test item mounted on a projectile
are used for model validation and correlation. Analytical simulation of the air gun launch
environment requires the modeling of an event in which the test object mounted on a
projectile is launched and decelerated when it crushes an aluminum (Al) honeycomb
mitigator in the recovery chamber. As a secondary energy-absorbing device, a momentum
exchange mass (MEM) is used at the retrieving end. Two formulations are used in the
simulations using explicit finite-difference methods. These included the Lagrangian and the
arbitrary Lagrangian/Eulerian (ALE) formulations. Benson [1] reviews the basic explicit
methods for solving transient, large deformation problems in solid mechanics.

During the crush simulation, the Al honeycomb mitigator undergoes significant deformation
that could render a severely unstable Lagrangian simulation. For this reason, an ALE simulation
is also considered. The Eulerian method is more suitable for problems involved in severe mesh
distortion. The Lagrangian method, on the other hand, is limited in how much an element can
deform. The Lagrangian method is easy to set up and visualize since the material point moves
with the mesh. However, the Eulerian method is more difficult to set up and the mesh is
stationary so that material points are advected from one element to the next. The Eulerian
method allows new free surfaces to be created in a natural manner. An ALE method is a
combination of Lagrangian and Eulerian formulations in which the parts that endure very large
deformation such as those involving material flow are modeled with the Eulerian approach.

Two material formulations are used for simulating the Al honeycomb mitigator behavior
with the Lagrangian method. These included honeycomb and crushable foam material
models. The honeycomb material model simulates an anisotropic crushable behavior of a
fully uncoupled system. The crushable foam material model, on the other hand, simulates an
isotropic crushable behavior of a coupled system. This isotropic foam model crushes one
dimensionally with a Poisson’s ratio that is essentially zero. Most of the Al honeycomb
material in the air gun simulation is crushed axially. Therefore, the crushable foam model is
considered to be appropriate for simulating crushing behavior of an Al mitigator in the air
gun test. The honeycomb material model formulation requires stress versus logarithmic
strain relationship. Stress versus volumetric strain relationship is used to formulate the
crushable foam material model. Only the crushable foam material model is used in the ALE
method. The effectiveness of these two material models, along with the applicability of
Lagrangian and ALE methods, are described next.
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Figure 1 Schematic of an air gun test setup.

2. AIR GUN TEST DESCRIPTIONS

A schematic diagram for a typical air gun test setup is shown in Figure 1. The test setup
consists of a stationary gun barrel, a projectile, and a dual energy-absorbing mechanism
consisting of a mitigator and a MEM positioned at the recovery end. In a typical air gun
mitigation test, the projectile carrying the artillery components to be tested is launched to
impact an Al honeycomb mitigator at the recovery chamber. Upon impact with the mitigator,
the kinetic energy of the projectile is lessened as the mitigator crushes. The crushed mitigator
in turn exchanges its momentum with a MEM, a secondary energy-absorbing device,
abutting its rear end.

A pre-shot arrangement of the dual energy-absorbing devices in an air gun retrieving
chamber is shown in Figure 2. As seen in the figure, the mitigator is stationed inside the split
catch tube at the start of the test. Four 12.7-mm (0.5-in.) diameter, 4340 steel tie rods (two
each side of the isle; see Figure 2) are used to fasten the top half of the split catch tube with
the stationary bottom half shown in the figure. The striking end of the 0.6087-gm/cm?
(38-pcf) Al honeycomb mitigator was fashioned to form two sharp wedges. The 7075-T6 Al
mitigator was 256.54 mm (10.1 in.) long, including a wedge depth of 38.1 mm (1.5 in.),
98.30 mm (3.87 in.) in diameter, and weighed about 1,110 gm. With two such wedges at the
striking end, the mitigator tends to crush evenly across its face. The length of the wedges
also determines the projectile’s deceleration profile during the impact. The MEM at the
recovery end weighed about 31,300 gm. A post-shot relative position for the physical
apparatus is shown in Figure 3. As seen in this figure, upon hitting its target, the projectile
remains trapped in the catch tube, the mitigator crushes, and the MEM displaces. A post-
test configuration of the mitigator shows that the striking end of the mitigator solidifies
more than its remote end.

Figure 2 A pre-shot arrangement in the 4-inch air gun test.
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Figure 3 A post-shot configuration of interacting components in a 4-inch air
gun test.

A test projectile consisting of a rectangular Al plate (101.0 mm [4 9 in.] X 76.2 mm [3 in.] X
12.7 mm [0.5 in.]) mounted on the top of an on-board recorder (OBR) case (152.4 mm [6 in.]
in length, 101.09 mm [3.98 in.] in outer diameter with a thickness of 12.7 mm [0.5 in.]) was
especially prepared for FE verification. The projectile including the OBR carrier and a
rectangular plate mounted on its top weighed about 3,250 gm. In this test projectile, OBR
records the data and the plate is the test item representing a simulated projectile component
that could be used in an actual air gun test.

Figure 4 shows the test projectile and the instrument locations for which the data were
recorded via an on-board 12-bit, 4-channel high shock analog recorder placed inside the OBR
case. Two accelerometers and two strain gauges were mounted on the test item. The analog

E- —

Figure 4 An instrumented test projectile.



Int. Jnl. of Multiphysics Volume 4 - Number 2 - 2010 155

recorder was shock isolated inside the canister by the suspension of the device over glass
beads and the canister being densely packed once the top mount had been assembled. An
isolated packaging arrangement was needed to ensure survival of the OBR.

3. MATERIAL MODELS
One of the most difficult aspects of this investigation was to define the material properties
that would represent the physical behavior of the Al honeycomb mitigator used in the air
gun test. In this investigation, no test was conducted for characterizing mitigator
properties. Therefore, the authors had to depend on the data available in the open literature.
The crush test results available in reference [2] were used to construct the material model.
As shown in Figure 5, three distinct features characterize the honeycomb mitigator’s load-
carrying behavior. These features included a linear elastic tendency until initial crushing,
typical volumetric crush, and final phase of hardening to full compaction. Almost all
energy absorption is done in the volumetric crush zone. Initial spikes at the end of linear
behavior are typical in the Al honeycomb resistance profile, which can be eliminated by
the crushing of the mitigator’s striking edge. The fluctuation of strength during volumetric
crushing, as seen in the figure, may have resulted from instability because of buckling of
honeycomb cells.

The two material models considered here are honeycomb and crushable foam material
formulations. The formulations of the two material models are described next.

3.1. HONEYCOMB MATERIAL MODEL

This material model is suited to model metallic honeycomb [3, 4, 5]. The behavior before
compaction is orthotropic where the components of the stress tensor are uncoupled, i.e., a
component of strain will generate resistance in the local a-direction with no coupling to the
local b and c directions. The elastic modulii (E) vary (see Eqn. (1)) from their initial values
to the fully compacted values linearly with the relative volume:

Eau = Euau + ﬂ(E - Euau) Gab = Gabu + ﬂ(G - Gabu)
Ebh = Ehbu + ﬂ(E - Ebbu) Gbc = Gbcu + ﬂ(G - Gbcu) (1)
Ecc = Eccu + ﬂ(E - Eccu) Gca = Gcau + ﬁ(G - Gczm)
(a) 90% efficiency (b) 64% efficiency
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Figure 5 Simulated stress-strain curves using two materials models, 90% and
64% compaction (stress is in N/mm?*?).
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in which

[ =max {min [11 —_VV',’ IJ,O:| (2)

and G is the elastic shear modulus for the fully compacted honeycomb material:

_ E
G_2(1+v) )

The relative volume, V, is defined as the ratio of the current volume over the initial volume,
and typically, V=1 at the beginning of a calculation.

At the beginning of the stress revision, each element’s stresses and strain rates are
transformed into the local element coordinate system. For the uncompacted material, the
stress components are revised (see Eqn.(4)) by the elastic interpolated modulii according to
the following:

O'Z;r]trial = O-Za + E;la Agaa O.g;;l trial = Zb + E;zb Agah
ojjlrial = opy+ By, Agy, ojilria = o).+ B, Ag,, )
GZ:ItViGI = O-ZC + E‘C(’ Agl‘ C o-?;;lt”al = O-Za + E;'ll Agﬂﬂ

We then independently check each component of the revised stresses to ensure that they
do not exceed the permissible values determined from the load curves; e.g., if

n+
|O_i/

Lirial

> /10-1'1'(31']') &)
then

lo—l_j"”'ltrial (6)

n+1grial
i

The components of o, (g, are defined by load curves.
The material model requires the stress versus logarithmic strain input for material
characterization [6]. The relation between the engineering strain, e and the logarithmic strain,

eis given by e=In(1+e)=1In ULLD in which the engineering strain, e, is defined by the

. L-L, [ AL
t = == _1===
cquation e ] La Lo

For instance, if the efficiency of the honeycomb material is 90%, the material final length

0.1 _
an > D‘—2.3026_

is only 10% of its initial length. The logarithmic strain in this case is €=

3.2. CRUSHABLE FOAM MATERIAL MODEL

This material model is suited for modeling crushable foam [3, 4, 5]. This isotropic foam
model crushes one dimensionally with a Poisson’s ratio that is essentially zero. In the
implementation, we assume that Young’s modulus is constant and revise the stress, assuming
elastic behavior (see Eqn. (7)).



Int. Jnl. of Multiphysics Volume 4 - Number 2 - 2010 157

()-I_j}_'1+1tria1: O-ijr_'l+ Eé;;l-#l/ZAle/Z (7)

The magnitudes of the principal values 6", i = 1,3 are then checked to see if the yield
stress O, is exceeded; if so, they are scaled back to the yield surface so that, if

O-y< |O_itria1 (8)
then
O._tria/
G;+l = O.y |O.Itrial (9)
i

After the principal values are scaled, the stress tensor is transformed back into the global

system.
The material model requires the stress versus volumetric strain relationship [6]. The
. . . |4 AL
olumetric strain € is defined as £,=1—-—=1- .
o ' W T T AL

Since we can assume that the crushable foam is crushed under a very small Poisson’s

ratio, the initial cross-sectional area is the same as the final one. Therefore, in this case the

volumetric strain can be simplified as £, =1 — L

L,

3.3. MATERIAL PARAMETERS

Parameters of interest for the material model include crush strength, crush efficiency
(volumetric strain that initiates the hardening), hardening modulus, and strain rate
enhancement attributable to increase in impact velocity. In this investigation, a stress scale
factor (relative increase in strength because of impact velocity) suggested by Bitzer [7], which
ranges from 1.2 to 1.5, is used because of the unavailability of high strain rate-dependent
experimental data.

In order to verify the validity of the materials models, an FE model was developed to
simulate the compression test reported in literature [2]. The displacement control is used in
the simulation. The simulated stress-strain curves for 90% and 64% compaction are
compared in Figure 5 for both material models. This figure clearly identifies three distinct
features in load-carrying behavior of honeycomb materials. These features included linear
elastic tendency until initial crushing, typical volumetric crush, and final phase of hardening
to full compaction. Almost all energy absorption is done in the volumetric crush zone. Initial
spikes at the end of linear behavior are typical in Al honeycomb resistance profile, which can
be eliminated by the crushing of the mitigator’s striking edge.

The mean values and the overall trends in the simulated curve closely match the test
data presented by Lu and Hutchinson [2]. A 90% efficiency means that the final length is
only 10% ofits initial length. Predicted crushing strain, thus for 90% efficiency (~2.5 mm/mm)
is greater than the 64% case (~1 mm/mm) as indicated in Figure 5. A simulation is also
performed for the static and rate sensitive cases. Results indicate that the rate-sensitive
stress is about two times the static stress [8]. This simulation testifies to the effectiveness
of the proposed material models in simulating the mean load-displacement relationship of
the Al honeycomb mitigator. This material model, however, disregards the strength
fluctuation during volumetric crush as evidenced in the physical test data shown in
reference [2].
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4. ARBITRARY LAGRANGE EULER FORMULATION

4.1. ALE DESCRIPTION

Lagrangian approaches easily model problems, in which interfaces between different
materials are present. However, if an analysis for complex geometry is required, the
distortion of the Lagrangian mesh involves to use many re-meshing steps in order to continue
the calculation. Another method to use is the Eulerian formulation. This change from a
Lagrangian to an Eulerian formulation, however, introduces two problems. The first problem
is the interface tracking [9] and the second problem is the advection phase or advection of
fluid material across element boundaries.

To solve these problems, an explicit finite element method for the Lagrangian phase and
a finite volume method (flux method) for the advection phase are used. Please refer to the
LS-DYNA theoretical manual [3] for a full description of the explicit finite element
method.

The advection phase has been added to the LS-DYNA code extending the range of
applications that can be used with the ALE formulation [10, 11, 12, 13]. Current industrial
applications include: sloshing involving a ‘free surface’ [14], and slamming problems [15],
which are high velocity impact problems where the target is modeled as a fluid material,
thus providing a more realistic representation of the impact event by capturing large
deformations.

An ALE formulation contains both pure Lagrangian and pure Eulerian formulations [10].
The pure Lagrangian description is the approach that: the mesh moves with the material,
making it easy to track interfaces and to apply boundary conditions. Using an Eulerian
description, the mesh remains fixed while the material passes through it. Interfaces and
boundary conditions are difficult to track using this approach; however, mesh distortion is
not a problem because the mesh never changes. In solid mechanics a pure Eulerian
formulation is not useful because it can handle only a single material in an element, while
an ALE formulation is assumed to be capable of handling more than one material in an
element [13].

In the ALE description, an arbitrary referential coordinate is introduced in addition to the
Lagrangian and Eulerian coordinates [10]. The material derivative with respect to the
reference coordinate can be described as Eqn. (10). Thus substituting the relationship between
the material time derivative and the reference configuration time derivative derives the ALE
equations,

WX, 1) I (x,0) I (x;,1) 10
oo T o o

i

where X, is the Lagrangian coordinate, x, the Eulerian coordinate, w, is the relative velocity.
Let denote by v the velocity of the material and by u the velocity of the mesh. In order to
simplify the equations we introduce the relative velocity w = v — u. Thus the governing
equations for the ALE formulation are the mass, momentum and energy equations given by
the following equations:

Ip _ v ap

=—p —L —yw — 11
ot pé’xi i ox; (n

av—a+b ? 12
po—’t_”’jpipwio"x (12)
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de de
P =0Vt phivi—pw, Jx) (13)
where p is the material density, b, the body forces, e, the internal energy.

The stress tensor o is described as follows:
0, = PO, + MV, + V).

where 51.]. is Kronecker’s delta function, p, the pressure field, i, the dynamic viscosity. The
strong form of the problem governing Newtonian fluid flow in a fixed domain consists of the
governing equations and suitable initial and boundary conditions (see Eqn. (14), Eqn. (15),
Eqn. (16) and Eqn. (17)). Thus the last equations are solved with the following boundary
conditions and initial conditions:

v,=U'  on, (14)

o,n = 0 onl, (15)
where

rul,=I,I''nI[L,=0 (16)

I' is the whole boundary of the calculation domain, and I, and I, are partial boundaries of
I'. The superscript means prescribed value, n, is the outward unit normal vector on the
boundary. The velocity field is assumed as known at ¢ = 0 in the whole domain €.

v(x, 0)=0 )

The equations governing the fluid problem are the ALE description of the Navier-Stokes
equations because the term in the relative velocity in Eqn. (11) and Eqn. (12) is usually referred
to as the advective term, and accounts for the transport of the material past the mesh. It is the
additional term in the equations that makes solving the ALE equations much more difficult
numerically than the Lagrangian equations, where the relative velocity is zero. Note that the
Eulerian equations are derived by assuming that the velocity of the reference configuration is
zero and that the relative velocity between the material and the reference configuration is
therefore the material velocity.

There are two ways to implement the ALE equations, and they correspond to the two
approaches taken in implementing the Eulerian viewpoint in fluid mechanics. The first way
solves the fully coupled equations for computational fluid mechanics; this approach used by
different authors can handle only a single material in an element [10]. The alternative
approach is referred to as an operator split in the literature, where the calculation, for each
time step is divided into two phases. First a Lagrangian phase is performed, in which the
mesh moves with the material, in this phase the changes in velocity an internal energy due
to the internal and external forces are calculated. The equilibrium equations are:

thi:O;j,j—'—pbi, (18)

J
p7f=o;jvi,j+pbivi' (19)

In the Lagrangian phase, mass is automatically conserved, since no material flows across
the element boundaries.
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In the second phase, the advection phase, transport of mass, internal energy and
momentum across cell boundaries are computed; this may be thought of as remapping the
displaced mesh at the Lagrangian phase back to its original for an Eulerian formulation, or
arbitrary position for an ALE formulation.

From a discretization point of view, one point integration is used for efficiency and to
eliminate locking [13]. The zero energy modes are controlled with an hourglass viscosity
[16]. A shock viscosity, with linear and quadratic terms, is used to resolve the shock wave; a
pressure term is added to the pressure in the energy equation. The resolution is advanced in
time with central difference method, which provides a second order accuracy in time, and
which leads to a staggered time for displacement and velocity, thus the displacement is

defined at time " = n - At, and velocity at time ;12 — [n'—lJAt . For each node, the
2

velocity and displacement are updated as follow:

yrHR =y g % (Fz _ JBtO:-de (20)
an+1=?cn+At .?/n+1/2 (21)

where F' is the external vector force associated with body forces and boundary conditions,
M is the diagonal mass matrix, and B’ is the discrete gradient operator, & is the total stress,
including the pressure and deviatoric parts, computed from the constitutive material
model. The time step size At, is limited by the Courant stability condition, which may be
expressed as:

At < ! with 0= Cic + Cldive))| if div(y) <0

0+ (07 + ) o
0=0 ifdivir) <0

(22)

%4.%4.% is the volumetric strain rate of the material defined using the

ox, Ox, Ox
velocity vector y= (W, W, ¥,). The volumetric strain rate of the element can be expressed
AV

VAt
change for the time step. / is the characteristic length of the element, Q is a term derived from
the shock viscosity, C, and C, are the coefficients for the linear and quadratic terms of the shock
viscosity. The Q term introduced in the equation is positive for compression and zero for
tension, when c is the speed of sound through the material in the element. For a solid material,
the speed of sound is:

div(y) =

using element volume, div(V) = where V' is element volume and AV the volume

4
2_§G+k (23)
a3t

Po
_, dP PJP (24)
k=P ot B e

where p, is the initial material density, G is the shear modulus, and P(p, e) is the equation of
state. In £, the second term on the right hand side accounts for the stiffening effect due to the
increase of internal energy as the material compressed. For fluid material the viscosity is
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ignored in the calculation of the speed of sound. For sloshing tank problems the pressure is
much greater than the deviatoric components stress due the fluid viscosity, and the deviatoric
stress is sometimes ignored.

4.2. VOF METHOD

In the impact problem, a VOF method (Volume Of Fluid) is used, this formulation allows
an element to be partially filled, a volume fraction of the material, Vs is defined for each
element, thus the element, which allows the material to flow through a fixed mesh, where
the empty element have a zero volume fraction, and the partially filled element have a
volume fraction between the values 0. and 1. The VOF is attractive for solving a broad
range of non-linear problems in fluid and solid mechanics, because it permits arbitrary large
deformations and allows free surfaces to evolve. The Lagrangian phase of the VOF method
is easily implemented in an explicit ALE finite element method. Before advection, special
treatment for the partially voided element is needed. For an element that is partially filled,
V. < 1. The total stress by & is weighted by volume fraction.

G,=0-V, (25)

For voided elements, the stress is zero. In the computational process, the elements loop
goes only through elements that are not totally voided. For free surface problems, the
elements that are partially filled are the elements where V. < 1, and define the free surface.

4.3. STRESS EQUILIBRIUM AND INTERFACE TRACKING

After the Lagrangian phase is performed, either the stress tensor, pressure and deviatoric
stress should be equilibrated, but most of the mixture theories equilibrate only pressure [13],
the equilibration pressure is a non-linear problem, which is complex and expensive to solve.
Skipping the stress equilibrium phase is assuming equal strain rate for both materials and is
incorrect. For most of the problems, the linear distribution based on volume fraction of the
volumetric strain during the Lagrangian phase also leads to incorrect results. The volume
distribution should be scaled by the bulk compression of the two materials in the element. In
an element containing air and water, the air is highly compressible. So air will absorb most
of the volumetric strain. Thus by assuming equal strain rate or volumetric strain scaled on
the volume fraction of the element, the water is forced to accept the same amount of strain
as the air, and will undergo artificial high stresses.

There are several methods for treating the free surface in a multi-material problem; the
common one is the MAC method, which involves Eulerian flow calculation and Lagrangian
particle movement. The velocity of the markers is found by first locating the cell containing
the particle and taking the average velocities of the cell nodes (the averaging is based on the
finite element particles in the cell). The particle cells have small inertia and tend to follow
the material deformation. However, the MAC method becomes complicated if the interfaces
become highly distorted or if the geometry is complex.

Another possible way of tracking interfaces is the use of the volume fractions of the elements,
or the Young method [17]. The Young method is developed to track an interface in elements
containing two materials for two-dimensional problems. This method is adapted in this paper for
the three dimensional problems. In this method, the material layout is described solely by the
volume fraction of materials in the element. Specifically, a straight line using the SLIC technique
(Simple Linear Interface Calculation) of Woodward and Collela [18] approximates the interface in
the cell. Interfaces are initially drawn parallel to the element faces. Then nodal volume fraction is
computed at each node based on the fraction volumes of elements that share the same node. This
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Material 2 _
grad f

n=

grad f‘

f: nodal volume
b fraction

Figure 6 Interface oriented by the normal r_7> in an Eulerian cell.

volume fraction intern determines the slope of the material interface inside the element. The
position of the interface (see Figure 6) is then adjusted so that it divides the element into two
volumes, which correctly matches the element volume fraction.

The interface position is used to calculate the volume of the fluid flowing across cell
sides. As the X-advection, Y-advection and Z-advection are calculated in separate steps, it is
sufficient to consider the flow across one side only. The interface calculation prevents
advection of very small fluxes between partially filled and empty elements. Instead fluid
flow is transported from ‘filled” element to ‘empty’ element and this change in volume will
be monitored and used to ‘fill-up’ the element or increase its volume fraction.

4.4. ADVECTION

In the second phase, the transport of mass, momentum and internal energy across the element
boundaries is computed. This phase may be thought of as a ‘re-mapping’ phase. The
displaced mesh from the Lagrangian phase is remapped into the initial mesh for an Eulerian
formulation, or an arbitrary mesh for an ALE formulation.

In this advection phase, we solve a hyperbolic problem, or a transport problem, where the
variables are density, momentum per unit volume and internal energy per unit volume.
Details of the numerical method used to solve the equations are described in detail in [17]
and [19], where first order Donor Cell method and second order Van Leer algorithm [20] are
used. As an example, the equation for mass conservation is:

P T (pi)=0 2
5V (pv) = (26)

It is not the goal of this paper to describe the different algorithms used to solve Eqn. (26),
these algorithms have already been described in detail by Benson [19] and Souli et al. [21].
We will focus on the ‘staggered’ mesh used for the momentum advection, described by
Benson [19].

The advected momentum is used for the computation of the new nodal velocities. To
prevent distribution of momentum from nodes to elements during the advection and from
elements to nodes during nodal velocity calculations, the momentum advection is done only
through the nodes. This procedure requires a staggered mesh. A mesh is staggered with
respect to the original mesh so that the original mesh centroids become the new nodes. Yaqui
[22] developed the first code to construct a staggered mesh (see Figure 7) for the momentum
advection, and the basic idea is still in common use.

A cell centered advection algorithm is applied to the staggered mesh for the momentum
advection. The data necessary for the advection algorithm are the cell volume before and after
the Lagrangian phase, velocities of nodal masses and fluxes between cells. All the data are
readily except for the fluxes. The new flux values on the staggered mesh are defined using a



Int. Jnl. of Multiphysics Volume 4 - Number 2 - 2010 163

original mesh

Figure 7 Staggered mesh and original mesh.

regular distribution of the fluxes from the original mesh element faces to the element faces on
the staggered mesh.

4.5, EULER-LAGRANGE COUPLING

Most of impact problems are solved using a classical Lagrangian formulation with contact
algorithm [23] and element erosion based on plastic strain or pressure failure, in order to
prevent high mesh distortion. These algorithms are not mass conservative and sometime it
is not possible to adjust the plastic strain failure for erosion. The new algorithm used to
solve the problem is not based on element erosion, but a new material, air or void, occupies
partially or fully the cell, the air material is defined as a fluid material using fluid
constitutive model with an equation of state which computes the pressure in the element
using the density and internal energy. For problems using void material, the void is assumed
as zero stress material. In the new coupling, mitigator and air materials are modeled using
an Eulerian or fixed mesh, a Lagrangian formulation is used for the impactor. The
Lagrangian mesh moves and deforms inside the Eulerian fixed mesh. The coupling interface
is defined through the material interface between mitigator and air materials, as shown in
figure 17. Coupling forces are computed using a penalty method based on spring stiffness
[24, 25]. Unlike the penalty contact used between two Lagrangian meshes, the penalty
coupling is used between an Eulerian grid which models the mitigator and air materials and
a Lagrangian mesh which models the impactor. Penalty coupling allows material to flow
through the mesh and around a structure but not through a structure. Penalty forces are
calculated proportionally to the penetration velocity and depth to behave like a spring
system. The coupling method has been used successfully for different applications, where
contact algorithms fail, due to high mesh distortion at the contact interface; high impact
problems with 8 nodes hex elements are usually very difficult to simulate using contact, the
coupling method is an alternative since mesh distortion is prevented using a fixed mesh for
the target material. To illustrate the coupling used in this paper, let us consider a rigid
structure with initial velocity is impacting a fluid, as shown in Figure 8, to clarify the mesh
used for the problem, only the fluid and Air mesh is illustrated, the structure mesh, not
shown on the figure, moves freely on the fixed ALE mesh. A constitutive model with an
equation of state is used for the water considered as a target material, the air material
occupies partially or completely the elements that will be eroded in a classical Lagrangian
calculation. In the new coupling formulation the ALE mesh (water and air) is fixed and fluid
material flows through the mesh. This formulation is very useful for high impact and
penetration problems since mesh distortions, which cause the time step to decrease, and the
problem to stop for negative volume. Nevertheless there are other problems related to the
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Figure 8 Impact of a plate on a free surface.

method, as to prevent fluid leakage through the structure. This is one of the difficulties we
are facing using this method.

5. THE FINITE ELEMENT MODELS

5.1. LAGRANGIAN MODEL

The FE model of the Lagrangian test setup is depicted in Figure 9. The model consists of the
catch tube (the wired mesh), the OBR (the brown mesh), the instrumented plate (the dark
blue mesh), the MEM, (the yellow mesh), and four beam elements that represented the bolts
connecting the two halves of the catch tubes. Upon modeling the OBR, no inner filler
materials including the recording devices and the glass beads were included in the FE model.

ARL GUN SIMULATION
Time =0

Y
ZAX

Figure 9 The Lagrangian finite element mesh.
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We simulated the total mass of the instrumented OBR in the FE model by adjusting the
density of the OBR canister. The analytical simulation of the impact starts with an initial
input velocity for the projectile from the position shown in the figure.

The FE model consists of 118,842 nodes and 123,164 clements. There are 14,744 shell
elements, 108,416 solid elements, and 4 beam elements in the model. Several contact
surfaces are defined in this model. A contact surface is defined between the OBR and the
mitigator, the OBR and the catch tube, the mitigator and the catch tube, and the mitigator and
the MEM. The segment-based contact is used in this case, which proved to be more stable.
Material models, honeycomb and crushable foam, are used in this model.

5.2. ALE MODEL

Since it is difficult to simulate very large deformation in the Lagrangian method easily, the
ALE method is employed. The Lagrangian method requires significant expertise in the
modeling of severe deformation. The ALE method, on the other hand, is more stable for such
problems. The mesh model reported in this paper consisted of 69,578 node and 65,724 elements.
There are 4,440 shell elements, 61,280 solid elements, and 4 beam elements in the model.
The ALE FE model consists of the catch tube, the OBR (glass beads are not modeled as in
Lagrangian case), the instrumented plate, and the MEM that is similar to the Lagrangian
model. The mitigator, however, is modeled differently here. The mitigator is modeled with
solid element formulation No. 12 in LS-DYNA. This element formulation is ALE and void.
The mesh in this part does not distort, which is the case with Eulerian description of motion.
The mitigator is surrounded by void elements. The void element is there for the possibility
of the mitigator material flow. Upon deformation, the mitigator material can flow outside of
the mitigator mesh. Once this happens, the mitigator material can flow into the void
elements. The solid elements of the mitigator and void have node-to-node correspondence at
the boundaries. Figure 10 depicts a section cut through the middle of the mesh. The blue
mesh represents the mitigator honeycomb and the red mesh is the surrounding void.

ARL GUN SIMULATION
Time=0

X’*\Z

Figure 10 Section cut of ALE model.
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The integration time step in an ALE simulation is smaller than a Lagrangian simulation
for the same mesh size. The explicit time integration time step in the Lagrangian method, in
general, is a function of the smallest element’s characteristic length and material properties.
In the ALE method, in addition to the above, it is also a function of mesh velocity. Therefore,
the integration time step in the ALE method is smaller than the Lagrangian method.

6. SIMULATION RESULTS

The simulations are performed on a 1.7-MHz laptop computer and also independently on an
Army Research Laboratory Major Shared Resource Center’s SGI Origin 2000 system. The
impact event is about 2 milliseconds (ms). The contact of the OBR with the mitigator is about
1 ms only. The CPU time with the laptop for the Lagrangian simulation is about 4 hours. The
Eulerian simulation takes about 16 hours to completion even though the number of elements
is about half those of the Lagrangian simulation. The impact velocity in both models is taken
as 83,566 mm/sec (3,290 in./sec.) We obtained the initial velocity by double integrating the
recorded accelerometer data from the actual test shot. The three fundamental units used here
are millimeter (mm), second (sec), and metric ton for the length, time, and mass, respectively.
Results of the two simulations are presented next.

6.1. LAGRANGIAN SIMULATIONS

6.1.1. Honeycomb Material Model

The strain rate effect must be included in such a simulation since the material exhibits strain
rate sensitivity. However, since experimental data for the used honeycomb material under high
strain rate are not available, a multiplier scales the stresses. The range of stress scale factor used
is between 1.2 and 1.5 for this material model [7]. The honeycomb material reported in
reference [2] has an efficiency of 64 to 90%. The 64% efficiency (or compaction) predicted a
stiffer response than the 90% compaction. Figure 11 shows the difference in predictions of the
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Figure 11 Acceleration of the top of the OBR for two different efficiencies.
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Figure 12 Impact simulation with the honeycomb material model.

167

two efficiencies. Figure 12 shows the impacted geometry and a view of the impacted geometry
of the air gun launch simulation. Figure 13 depicts the energy balance as predicted by the
simulation. One can see that the energy is conserved in this simulation, which is an indication
of numerical stability of the model. The hourglass energy and contact energy (not shown here)
are much smaller than the internal energy as desired in a stable impact simulation.
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Figure 13 Energy balance, honeycomb material model.
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Figure 14 Crushed mitigator, crushable foam model.

Crushable Foam Material Model

The CPU time for the simulation with this material model is about the same as for the
honeycomb material model discussed before. The crushed mitigator is shown in Figure 14.
A stress scale factor of 1.5 is used to account for the strain rate sensitivity. The qualitative
difference between the simulations with honeycomb and crushable foam models was
insignificant. Figure 15 and 16 shows the displacement of the MEM and filtered acceleration
of the top of the OBR for both material models respectively. The magnitude of the
acceleration for the two materials is about the same. However, there is some difference in the
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Figure 15 Displacement of the MEM, honeycomb material model.
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Figure 16 Acceleration (in mm per sec?) of the top of the OBR with honeycomb
and crushable foam models.

duration of the pulse. This difference is attributed to the differences in the formulation of the
two material models. The honeycomb model is an orthotropic material, which assumes that
stress components are fully decoupled. Straining of the material in the local material axis in
one direction causes stress in that direction only. However, the crushable foam is an isotropic
material model and the stress components are not decoupled.

6.2. ALE SIMULATION

The mesh is fixed in an ALE simulation. In this situation, one can look at the volume fraction
of the material. The volume fraction is equal to 1 when the element is filled with the material.
A volume fraction of less than 1 means that only part of the element is filled with the
material. The volume fraction of the mitigator material at the end of the simulation is
depicted in Figure 17. One can observe that the Eulerian mesh has not moved; however, the
material has passed from one element to next, indicating material flow and deformation.

A comparison of the prediction of the acceleration of the top of the OBR via the
Lagrangian and ALE methods is shown in Figure 18. These data are filtered with a low pass
filter with a cut-off frequency of 2500 Hz. A small difference is observed in the magnitude
of the peak acceleration. This difference, however, can be neglected and assumed to be the
numerical error difference between the two methods.

7. MODEL VALIDATION: SIMULATION VERSUS EXPERIMENT
The simulation results are compared with experiments qualitatively and quantitatively.
Qualitatively, the deformation of the mitigator looks the same in the simulation and
experiment. The experimental final crushed length of the mitigator is reported as 210.0 mm
(8.27 in.). The simulated final crushed length of the mitigator is predicted to be 226.0 mm
(8.90 in.) —A difference of about 7% from the actual crushed length.

The quantitative validation consists of comparing the acceleration data from simulation
and experiment for the locations shown in Figure 4. The locations of nodes for which the data
were extracted are at the same locality as in the test setup.
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Figure 17 Volume fraction of the mitigator at the end of the simulation.

For comparison purposes, the simulation results and the experimental results are filtered
with low pass cut-off frequencies of 7,000 Hz and 2,500 Hz, respectively. The simulations
and the experiment’s acceleration of the top of the OBR for both filtrations are shown in
Figures 19 and 20. Figure 19 shows a relatively good agreement between the predicted and
test acceleration responses with the honeycomb material model when a stress scaled factor
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Figure 18 Acceleration (in mm per sec?) of the top of the OBR filtered at 2500 Hz
for both the Lagrangian and ALE simulations.
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Figure 19 Simulation versus experiment, acceleration (in g’s) of top of OBR filtered
at 7000 Hz.

of 1.5 was used in the analysis. A higher stress scale factor (1.5 instead of 1.2) has
significantly attenuated the free vibration, as indicated in Figure 19. Good prediction is
observed from the simulation as compared to experiment, particularly for the 2500-Hz cut-
off frequency. Figure 20 compares several runs for the simulation. Two predictions are
presented for the honeycomb material model with two different stress factors (1.2 and 1.5).
One can observe that when the stress is scaled by 1.2, the peak acceleration is under-
predicted. When the stress is scaled by 1.5, the peak acceleration is over-predicted. Figure 20
also shows the prediction of acceleration with the crushable foam material model. In this
case, the stress is also scaled by 1.5.

8. CONCLUSIONS

Lagrangian and ALE methods are developed to simulate the air gun launch environment in
which a test object mounted on a projectile is fired through the air gun and decelerated by
the crushing of an Al honeycomb mitigator which impacts the MEM before being stopped at
the retrieving end. The Lagrangian method is simpler to set up, post process, and requires
less computational time. However, it requires significant expertise in the FE model to make
the simulation numerically stable. This is because of the significant large deformation of the
mitigator. On the other hand, the ALE method is more difficult to set up, post process, and
requires much more CPU time. However, the ALE simulation is more suitable for very large
deformation problems such as those involving material flow. Both computational methods
lead to the same prediction for the acceleration of the OBR.

Material models, honeycomb and crushable foam, lead to reasonable predictions and are
able to simulate the behavior of the mitigator. The strain rate sensitivity must be accounted
for in these simulations. If no strain rate effect is included, the peak acceleration of the OBR
is under predicted. In the presented simulation, instead of activating the rate effect in the
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Figure 20 Simulation versus experiment, acceleration of top of OBR filtered at
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material models, the stress is scaled by values between 1.2 and 1.5. This will have the same
effect as if the rate effect were activated in the material model.

Good prediction of the period and peak acceleration of the OBR is achieved with the
presented models and the methods employed. A similar FE modeling technique can be used
for such problems with confidence that the code will aid in the prediction of the proper
response of any instrument mounted on the OBR.
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