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Study of the electrical conductivity in fiber composites
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ABSTRACT

Three-dimensional simulations have been conducted to predict the

percolation threshold in fiber composite materials. It has been shown that

the expansion of the sample’s size increases the sharpness of distributions

curves of the percolation threshold. Decreasing the percolation threshold

with longer fiber is also verified. A method is proposed to evaluate the

electrical resistance of fibrous composites. Assuming meandering paths, the

calculation is based on detecting conductive pathways through the

insulating matrix. The percolation is detected by the height of the conducting

cluster instead of its number at the two electrodes. The electrical resistivities

and the conduction thresholds of the carbon fiber reinforced polycarbonate

composites have been characterized. The simulation results are in good

agreement with an experimental study result found in the literature. 
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1. INTRODUCTION
The composite materials are commonly used in a wide variety of industrial applications such
as pressure-sensing elements, resistors, transducers, thermistors, piezoresistors, chemical
sensors and as packaging materials for substrates in electronic applications. An important
topic, closely linked to the basic fundamental physical properties of those materials [1], is
the investigation of their heat and electrical transport phenomena. 

The electrical conductivity of random mixtures of conductors and insulators (as for
example, conducting particles in a polymer matrix) has been successfully interpreted using
the percolation theory (based on the observation of a dramatic increase of the effective
conductivity for a certain filler concentration called the percolation threshold [2–9]). The
classical percolation applies to this class of solids under the following definite conditions:
the particles must be spherical in shape, monodispersed and have an isotropic conductivity
[10]. The interest about the percolative properties of random assemblies of elongated
elements characterized by large aspect ratios (the ratio of the length to the transversal size)
is aroused by the large development of fibrous composite materials. 

Although the percolation theory has received the greatest attention as a predictor of the
electrical conductivity of composites versus the filler content, other non-percolation models
(such as thermodynamic models, geometrical and structure-oriented models) have also been



proposed [11, 12]. From the engineer’s point of view, the structure-oriented models are the most
promising ones in this group. They are based on microstructural data such as fiber’s orientation,
length and packing arrangement. Either the conductivity of the matrix or the filler is predicted
by most of these theories, however the percolation threshold is not taken into account [13]. 

The present work deals with a quantitative estimation of the electrical fiber composite
resistance by studying the connectivity of the fibers.  Our approach uses the percolation and
structure-oriented modeling concepts, to perform a simulation of a 3-D random dispersion of
elongated elements with various aspect ratios and to predict the percolation threshold for the
formation of continuous particles chains. All of our computations are based on the spatial
configuration of the generated samples. The simulation is used to evaluate the electrical
resistance of polymer/carbon fiber composites by updating the connectivity of the resistor
network formed by the conducting clusters assumed to be meandering through the matrix and to
compare the obtained theoretical results with the existing experimental ones. 

2. DESCRIPTION OF THE METHOD 
The composite samples studied have a cubic shape with n sized edges called sample’s size.
They are divided into n3 elementary cubes. The conductive fillers are fibers of length L,
occupying a volume fraction p of the global composite’s volume (Figure 1). For each fiber,
a position (expressed by coordinates x, y and z of an elementary cube, and an orientation (1,
2, or 3 in one of the three possible directions X, Y or Z) are attributed. 

The method is based on the following assumptions:

• Each conducting fiber is represented by a group of L adjacent cubes (in order to
control the fiber’s length) lined up along one of the principal axes of the lattice.

• The sample is considered to percolate if it is spanned by a conducting path in a given
direction chosen to calculate the resistance and if the cluster’s height corresponds to
the size of the sample (instead of finding the same cluster’s number at the two
electrodes as usually done).

• The conduction occurs between two different fibers when they touch along a non-
zero surface. 

• The electrical resistivity ρi of the polymer matrix is not considered in the resistivity
of the composite when the probability of percolation exceeds 50%.

2.1. SAMPLE GENERATION 
The samples are generated following the steps listed bellow:

• For each sample, the fibers are introduced randomly starting with an empty lattice.
The center (x, y, z) for the conductive filler is first generated as three random
numbers and tested whether these coordinates are already attributed to another fiber.

Figure 1 Sample generation: (a) Discretized matrix, (b) Fibers with length L = 4.

(a) (b)

n

n

n L

142 Study of the electrical conductivity in fiber composites



Int. Jnl. of Multiphysics Volume 4 · Number 2 · 2010 143

• An orientation is randomly chosen for the fiber.
• A new fiber is rejected if it would overlap a fiber already introduced.
• For each fiber introduced, a cluster’s number is attributed to it.
• The fibers in contact are found and the smallest cluster’s number of them is

attributed to these fibres. Then, the cluster’s lengths in the three directions are
calculated and the corresponding electrical resistance is computed.

• A spanning cluster is found in one of the three directions by testing the cluster’s length.
If this occurs, the volume fraction kept at this stage is called percolation threshold p

c
. 

For each sample, the building process is stopped when the percolation occurs first; the
corresponding density is then registered. The process repeats for M different distributions of
fibers when determining percolation threshold distribution. For the electrical composite
resistance prediction, the spatial distribution of the conductive fillers is generated by
repeating the above described procedure until the pre-determined volume percentage is
reached. At that point, the evaluation of the electrical composite resistance begins.

2.2. ELECTRICAL RESISTANCE COMPUTATION
When two conductive particles are in contact, there is a resistance associated with the
constriction of the electrons flow through the contact area. This resistance, known as the
constriction resistance Rcr at the contact interface, depends on the contact area and has been
shown to be the Holm’s resistance [14, 15] for a contact diameter larger than the mean free
path of the electrons in the metal. Its expression is given by:

Rcr = ρf �d (1)

where ρf is the intrinsic filler resistivity and d the diameter of the contact spot. 
Assuming clean contacts (no thin insulating films surrounding the particles), the electrical

contact resistance Rc can be assumed to be the constriction resistance Rcr. Then, the resistance
of a fiber-to-fiber contact Rff is the sum of the constriction resistance Rcr and the bulk
resistance Rb of the fiber [14]:

Rff = Rc + Rb = Rcr + Rb (2)

Rb = ρf × L�S (3)

where L and S are the fiber’s length and cross section respectively, the shape of the fiber
(characterized by the aspect ratio AR) being expressed in the simulation by a length L and a
thickness equal to unity.

Knowing the resistivities of the two phases, the cluster resistance is calculated according
to equations (1), (2) and (3). For the contacts between clusters, the same method is used with
replacing the center of the fiber by the center of the cluster.

Searching conducting pathways in a given direction for a fixed fraction of the filler is based
on computing the lengths of all the clusters in the considered direction. Each path is assumed
to be a set of serial resistors representing the fibers in contact. So the total path resistance Rs

is deduced by adding the bulk resistance Rb to the contact resistance Rc of the fibers in contact
(Rff ) [14, 15]:

Rs = Σ (Rc + Rb) (4)

Then, the effective resistance Re of the sample is the equivalent resistance of these
conducting pathways assumed to be in parallel:

1�Re = Σ 1�Rs (5) 
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Each resistance value is obtained by averaging M different networks. 
For each volume fraction, when the probability of percolation do not exceed 50%, we

consider that there is no continuous conducting path through the matrix and the electrical
resistance of the composite is taken to be the electrical resistance of the matrix and is given by:

Re = ρi �n (6)

where ρi is the matrix resistivity and n the sample’s size. 
It most be noticed that the bulk resistance Rb in a considered direction will depend on the

fiber’s orientation. Following the X axe direction, the bulk electrical resistance for a fiber
having a width and a thikness of unity will be, when oriented in the: 

X axe direction, 

Rbx = ρf
. L (7)

Y axe direction,

Rby = ρf �L (8)

Z axe direction,

Rbz = ρf �L (9)

3. RESULTS AND DISCUSSION
The results provided by the algorithm are: the number of inclusions, the volume fraction of
occupied cubes at percolation in each direction, the number of clusters, the number of the
cluster responsible of the percolation and the effective electrical resistance of the sample.

3.1. EFFECT OF THE FINITE SIZE OF THE SAMPLE AND THE FIBER’S
LENGTH ON THE PERCOLATION THRESHOLD
The finite size and fiber asymetry effects are verified by varying the sample’s size n from 20
to 120 and the fiber’s length L from 2 to 10. The distributions of percolation thresholds,
shown in Figure 2, are obtained by fixing the iteration number to 1000. 

Each distribution has a Gaussian shape centred at an average value. This value decreases
with increasing the sample’s size n (Figure 2.a) and is of about 20 volume percent for n = 70.
This behavior is reproducible for other fiber’s lengths (Figure 2.b). The peaks of the
distributions become sharper for large samples. Similar results have been noticed by
Boissonnade et al. [16]. It is well-known that the percolation threshold depends strongly on
the particle shape [17, 18]. A Monte-Carlo simulation made on fiber composites gives
Gaussian shaped distributions of the percolation threshold for large sample’s sizes, centered
at 0.32 volume fraction for L = 1 [16]. This result is the characteristic percolation threshold
of a square lattice containing spherical particles [18, 19]. A wide range of conductivity
thresholds has been reported, depending upon the packing densities of the filler, the shape of
the filler, the distribution of the filler’s size, the aggregation effects and the filler particle size. 

The numerical results shown in the curves of Figure 2.a indicate that the percolation
volume fraction is very dependent on the sample’s size. It begins to converge at n = 60 for L
= 4 (the distribution’s width decreases and the pc values converge). To overcome this effect,
large sample’s sizes are used. Figure 2.b shows the stability of the percolation threshold with
increasing n for L = 20.

Figure 3 shows the evolution of the percolation threshold versus the sample’s size. pc

trends to a limit at n = 80 for L = 4. 
In all the curves, one can note the decrease of the conduction threshold with increasing
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the sample’s size indicating then an increase of the probability of percolation in larger
samples. This phenomenon is called finite size effect and is due to a finite sample’s size [16]:
when n is finite, the percolation threshold decreases with increasing the sample’s size. When
the latter is large enough, the real value of pc can be approached. The same behavior is
observed for the used two fiber’s lengths. 

It is evident from the simulation results that a large box size requires a smaller fiber’s volume
fraction to percolate. The shape of the filler particle has been shown to alter the conductivity. For
spherical particles, a smaller particle’s size will lower the percolation threshold, while for
particles with an aspect ratio AR (ratio L�D of the length L to the diameter D) greater than 1,
larger AR and broader ranges of AR will lower the percolation threshold [20]. It is evident that
conductive filler particles are more effective in contributing to the development of the electrical
properties of the composite when they are used at high loading levels, but it was shown that an

Figure 2 Distributions of percolation thresholds pc for two fiber’s lengths L and
different sample’s sizes n :
(a) n = 20, o n = 30, n = 40, n = 50, + n = 60, X n = 70, L = 4,  
(b) n = 90, o n = 100, n = 110, n = 120, L = 20. 
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additional advantage is provided by asymmetric filler’s particles in terms of the distance of
separation. This verify results of percolation studies carried out with conductive particles in
polymeric matrices which indicate that asymmetric fillers establish conducting networks within
the polymer at lower volume fractions than the powders [21]. 

3.2. ELECTRICAL RESISTANCE ESTIMATION
Figures 4.a, b, c represent the evolution of the electrical resistance versus the volume fraction of
a composite having a matrix resistivity ρi of about 1015 Ωm (for polycarbonate) and a filler
resistivity ρf of about 1,67.10−3 Ωm for carbon fibers (these data have been reported in recent
works on polymer composites [13, 20]). Each point of the curves is an average value calculated
from 100 different sample’s configurations. One can observe an abrupt decrease of the resistance
with increasing the conductive volume fraction in the composite. From about 5.1013 Ω, the
resistance decreases to few ohms at about 30 percent loading for 40 and 50 sample’s sizes and

Figure 3 Evolution of the percolation threshold pc versus the sample’s size n for 
L = 4.
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a fiber’s length L = 8. This behavior is well known and was explained by Taipalus et al. [13] who
argued that the particles are almost homogeneously distributed in the insulating matrix without
any contacts between the adjacent filler’s particles, at low filler loadings. The conductivity of
these composites is comparable to that of the polymer matrix. However, with rising the filler’s
concentrations, the filler’s particles begin to form clusters, in which the particles are in contact
with each other. At a certain filler’s concentration, the growing clusters reach a size which
enables contacts between them; a continuous network structure of the conducting filler is
formed. The network formation can be detected as a drastic decrease in the electrical resistivity.
The abrupt decrease in the electrical resistivity occurs at a concentration called percolation
threshold of the filler material. At loadings above the critical value, the resistivity reaches a
plateau and does not increase significantly with a further addition of the filler [13]. 
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Figure 4 Variation of the electrical resistance of the composite versus the volume
fraction for different sample’s sizes and fiber’s lengths 
(a) L = 2: o n = 30, + n = 40, X n = 50
(b) L = 4, (c) L = 8: o n = 30, n = 40, + n = 50.
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We observe on Figure 4 the decrease of the percolation threshold with increasing the
fiber’s length: in the case n = 40, we notice that pc drops from 45 vol.% for L = 2 to 40 vol.%
for L = 4 and to 35 vol.% for L = 8. 

Samples of size 30 (Figure 4.b and c) exhibit some delay in the resistance transition compared
to the others. This is due to the increasing of the fiber length which renders filling the gaps
between the fibers more difficult taking into account the fiber’s orientation. In contrast, fibers of
length L = 2 are short enough to fill the gaps and ensure conducting paths as shown in Figure
4.a where the electrical resistance reaches a steady state at about 47 volume percent. 

When the total space volume of the sample is increased, the number of conducting paths
between the external electrodes increases, resulting in an enhanced conductivity as well as a
reduced percolation volume percentage [22]. This explains the decrease of pc with increasing
n, observed in all the cases (a, b and c). 

Comparisons with experimental results obtained by Clingeman et al. [20] while inves-
tigating the conductivity in polycarbonate/milled PAN-based carbon fiber composites will be
made assuming an AR of 20 (L = 20)  since the authors used fibers with 7.3 microns diameter
and 200 microns mean length. One unit mesh in our simulation corresponds to 10 µm. The
resistivity of the polycarbonate and carbon fiber have been assumed to be of about 1015 and
1,67.10−3 Ωm respectively [13, 20].

The comparison is illustrated by the curves of Figure 5. It shows the efficiency of the
method to predict the electrical conductivity level before and after percolation, and the
percolation threshold itself. The difference in the curvature or inflexion is probably due to
the dimensions of the samples (not fixed in the study of Clingerman et al. [20]), to the
tunnelling resistance (neglected in our study) and to the filler-matrix interaction (surface
energy of the two constituents) which was not considered. These factors will be the focus of
the future investigations.

The method is only meant to offer a qualitative look at the factors affecting the electrical
resistance and a quantitative comparison of two different filler or matrix materials with
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Figure 5 Variation of the electrical conductivity versus the volume fraction in
polycarbonate/milled PAN-based carbon fiber composite, Experimental result, 

Simulation result (n = 1,00, L = 20). 



Int. Jnl. of Multiphysics Volume 4 · Number 2 · 2010 149

regard to their intrinsic properties. It is shown that it is efficient to evaluate the electrical
composites resistance versus the volume fraction of the fibers.

4. CONCLUSIONS
The study of the percolation in polymer fiber composites using a 3-D program is based on
analyzing the connectivity of the fibers versus their volume fraction. It has allowed the
determination of percolation threshold distributions for different sample’s sizes and has
verified the finite size effect on the percolation threshold. The procedure follows the
approach of updating the matrix connectivity after addition of each inclusion and thus
average threshold volume fractions were obtained for finite size boxes. For a sample’s size
of 70 and a fiber’s length of 4 the threshold was estimated to be 20 percent. 

A simulation method was presented to model the dependence of the electrical resistance
as a function of the load and the particle’s size for a carbon fiber-filled polymer. The
evaluation of the electrical composite resistance was based on the notion that the composite
is the result of a large number of resistors combined in series and parallel. 

The evolution of the electrical resistance versus the filler volume fraction exhibited as
predicted, a transition from an insulating to a conducting behavior for different sample’s sizes
and fiber’s lengths. The finite size effect was also noticed on the curves, which suggested the
usage of larger samples to avoid this effect in order to approach the real values of the
percolation threshold and electrical resistance. Lower percolation thresholds were obtained
with fibers of AR equal to 20.

Although simplifications were introduced in the model, such as all the fibers having the
same size, it fits very well an experimental data and allows prediction of the electrical
resistance curve for other particles’ sizes. This method makes possible to us investigation of
the effects of different parameters on the electrical properties of carbon fiber-filled polymers.
Numerical simulation is shown to be a useful method to study the electrical properties of
these materials. 
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