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ABSTRACT

Effective numerical algorithms are worked out for solving the nolinear

system of ODE for finding the static distributions of the magnetic flux in 

N-stacked JJs, as well as the corresponding matrix Sturm-Liouville problem

for studying their global stability. The particular case of three stacked JJs is

investigated. A correspondence is made between loss of stability of a

possible static distribution of the magnetic flux, obtained by solving the

static problem, and the switching to dynamic state obtained by solving the

dynamic problem. In this work we show by means of numerical simulation

that the transient process of switching from static to dynamic state in

symmetric three stacked JJs depends on the way of exceeding the

external current.

1. INTRODUCTION
Stacks of long Josephson Junctions (JJs) were intensively studied during the past years. In
these systems both nonlinearity and interaction between subsystems play an important role.
Such structures make it possible to state and study new physical effects that do not occur in
single JJs. One of the most interesting experimental results for two stacked JJs found in resent
years is the so-called current locking (CL). The essence of this phenomenon is as follows:
there exists a range of the external magnetic field where the different junctions switch to
dynamic state simultaneously when the external current exceeds some critical value. It was
shown by means of numerical simulation [1] that experimentally found CL for two stacked
JJs can be obtained and well explained in the framework of inductive coupling model [2]. CL
is essentially dynamical phenomenon witch occurs during the complex transient process of
magnetic flux penetration into the junctions. However we think that for better understanding
of the processes (not only the above mentioned) in real experiments, it is useful to study the
possible static distributions of the magnetic flux. For example we can interpret the transitions
from static to dynamic state as bifurcations of some stable static solutions under the change
of parameters (the applied magnetic field and the external current).

2. MATHEMATICAL MODEL
A simple scheme of N-stacked JJs (N + 1 superconductor layers divided by N insolating
layers) is shown on Figure 1. Black layers are insulators with thickness D and white ones are
superconductors with thickness d. Such stack is called symmetric. Main physical quantities
that can be measured are the external current, the voltages on the whole system and the
voltages of individual junctions.
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The dynamics of the Josephson phases ϕ (x, t) = (ϕ (x, t), …, ϕN (x, t))T (the ith element of
ϕ is the phase difference across insulating layer i) in symmetric N-stacked JJs is described by
the following system of perturbed sine-Gordon equations [2]:

(1)

where α is the dissipation coefficient, J = (sin ϕ1, …, sin ϕN)T is the vector of the Josephson
current density, Γ = γ (1, …, 1)T is the vector of the external current density. The matrix 
L = tridiag(1, s, 1) is the matrix of the inductive interaction between junctions. Here s = −λL /
(D sinh(d /λL) + 2λL cosh(d /λL)), where λL is London’s penetration depth, 0.5 < s ≤ 0 for
arbitrary N.

The system is written in normalized units. Space x is normalized to the Josephson length λJ
and time t to the inverse of plasma frequency ω0

−1. The definition of dimensionless units can be
found in [3]. In this work we consider stacks of overlap geometry placed in external magnetic
field he , therefore the system (1.1) should be solved together with the boundary conditions:

(2)

where H is the vector H = he(1, …, 1)T and appropriate initial conditions. The existence of
Josephson current generates a specific magnetic flux. When the external current is less than
some critical value the junctions are in static state and the voltages of all individual junctions
are equal to zero.

The static problem corresponding to Eqns (1), (2) is

(3)

(4)

To study the global stability of a possible static solution the following Sturm-Liouville
problem (SLP) is generated:
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(7)

where . This is equivalent to study the positive definiteness of the second
variation of the potential energy of the system. The minimal eigenvalue λmin determines the
stability of the distribution under consideration. A minimal eigenvalue equal to zero means a
bifurcation caused by change of some parameter, in our case - the external current γ .

3. NUMERICAL METHOD
In order to solve the nonlinear boundary value problem (3), (4) we use an iterative algorithm,
based on the continuous analog of Newton’s method (CAMN) [4]. As initial approximations
for the iteration process we take combinations (for the different junctions) of solutions which
exist in the one-junction case and he = 0, γ = 0 :

– Meissner solutions (denoted further by M) of the form ϕ (x) = 2 kπ, k 
= 0, ± 1, …

– fluxon (antifluxon) solutions, for which there are exact analytical expressions
in the case of infinite junctions (l = ∞). The single fluxon/antifluxon solution
has the well known form ϕ (x) = 4 arctan(exp(±x)) +2 kπ, k = 0, ±1, … Further
for n-fluxon distributions we use the simple notation Fn, n = ±1, ±2, … For
junctions of finite length objects of type Fn are not fluxons in a strong sense,
but by analogy the same terminology is used.

CANM gives a linearized boundary value problem at each iteration step. The linear
boundary value problem is solved numerically by means of Galerkin finite element method
(FEM) and quadratic finite elements. FEM is used also to reduce the SLP (5), (6), (7) to a
linear algebraic problem whose few smallest eigenvalues and the corresponding
eigenfunctions are found by the subspace iteration method [5]. To test the accuracy of the
above methods we have used the method of Runge by computing the solutions on sequence
of embedded meshes. The numerous experiments made show a super-convergence of order
four for both the static problem and the SLP.

4. NUMERICAL RESULTS
The simplest generalizable model of stacked JJs is the case of three stacked JJs because it
takes into account the difference in the behavior of the interior and exterior junctions. The
numerical results presented here are for the particular case of three stacked JJs, but the
method of investigation and its program realization are developed for the general N-junction
case (N > 1).

We briefly discuss the numerical results. We investigate numerically the possible solutions
of problem (3), (4) and seek for critical values of the external current γ at given applied
magnetic field he. Changing the value of γ for given he when the geometrical parameters are
fixed we get the critical currents for the solution under consideration. The results for some
special solutions are shown on Figure 2.

In principal, for a given magnetic field, there may be several allowed static distributions of
the magnetic flux differing in number of vortices they contain in the different junctions. Each
of these solutions has its own critical current. We don’t answer the question when the system
can be at a given static state in the real physical experiment. However at low fields all the
junctions could be in Meissner state and the results for the transient process of switching from
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static to dynamic state in this case correspond to the real physical situation. In order to verify
the critical current γcr found by solving the SLP (5), (6), (7) we excite all static solutions
shown on Figure 2. by exceeding the external current below and above γcr by using the
dynamical model. Solving the static problem gave us a possibility to use precise initial values
for the dynamic problem (1), (2). We have expected that for excitations below γcr the system
will remain in static state and for excitations above γcr it will switch to dynamic state. The
numerical results confirmed our expectations.

At external field he= 0.5 we found interesting result. To analyze the transient process of
switching to dynamic state we excited Meissner (MMM) solution in four different ways
(Figure 3.). For (MMM) solution the components ϕ1, ϕ3 for the exterior junctions are of the
same type. Dew to the symmetry of the stack we have ϕ1 = ϕ3 = ϕ ex, ϕ2 = ϕ in.
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Figure 3 Increasing the external current in different ways in vicinity of the critical
current of Meissner type solution at he = 0.5 for 2l = 10, α = 0.1, s = −0.3.
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Excitation γ1 (t) is under γcr. Excitations γ3 (t) and γ4 (t) are above γcr, they have the same final
value, but they differ in slope. Excitation γ2 (t) is above γcr , it has the same slope as γ4 (t), but lower
final value. As we have expected, for γ1 (t) all the junctions remain in Meissner state (Figures 4, 5).

The numerical experiments confirmed also our expectation that if γcr is some how
exceeded, at least one of the junctions will switch to dynamic state. For excitation γ4 (t) all
three junctions switch to resistive state (Figures 6, 7). For γ2 (t) and γ3 (t) only the interior
junction switches to resistive state (Figures 8, 9). In all these cases the transient process starts
with penetration of fluxons in the interior junction, i.e., the interior junction drives the
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Figure 5 γ2 (t), instant voltage ϕt
in.
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Figure 4 γ1 (t), instant voltage ϕt
in.
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transient process. In the case γ4 (t) the switching of the interior junction to resistive state
triggers the switching of the exterior ones, while in the cases γ2 (t) and γ3 (t) it does not.

5. CONCLUSIONS
Numerical technique is proposed and realized for solving the nonlinear stationary problem and
the corresponding matrix Sturm-Liouville problem for stack of N inductively coupled LJJs. The
particular case of three stacked JJs is investigated. A perfect agreement between the results found
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Figure 7 γ4 (t), instant voltage ϕt
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Figure 9 γ2 (t), instant voltage ϕt
ex.
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by solving the Sturm-Liouville problem and those found by solving the dynamic problem is
established. The numerical simulation shows that the switching from static to dynamic state in
symmetric three stacked JJs depends on the way of increasing the external current.
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