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ABSTRACT

This article deals with the optimal design of long and slender compressive

struts. The main objective is to minimize the mass of the struts under

certain non-failure constraints and thus find the optimal material. We show

that the main failure mode of the struts is Euler buckling. The results clearly

show that the struts should be constructed from unidirectional carbon fiber

composites. A Monte-Carlo model for random microstructure

homogenization of unidirectional composites is developed. We finish by

performing a numerical computation of the effective properties of the

chosen carbon fiber/epoxy composite using COMSOL MULTIPHYSICS

software.

1. INTRODUCTION
Recent developments in material technology have introduced new computational challenges,
such as the determination of thermo-elastic properties in a composite material or the
calculation of flow through a porous medium. Several of these problems have in common
that the governing equations involve rapidly oscillating functions due to the heterogeneity of
the microstructure. These rapid oscillations render a direct numerical treatment impossible.
Instead, one is forced to do some type of averaging or asymptotic analysis, which is the
starting point for the concept of homogenization.

In this article, we start by analyzing a simple optimization problem, namely to minimize
the mass of a long and slender compressive strut. We base the minimization on four basic
load situations and determine material indices for each case. It quickly turns out that the best
choice of material will be a unidirectional carbon fiber composite. However, to check the
validity of the investigated load cases, we also find the dominating failure mode in section
three. In section four, we give a brief introduction to the theory of homogenization and show
that the effective material depends on the solution of a certain cell problem. Finally, in
section five we develop a method to approximate a random microstructure by solving an
ensemble of pseudorandom cell problems. We finish by giving a numerical example where
we find the effective elastic tensor for a specific carbon fiber composite.

2. MATERIAL INDICES
Consider a long and slender compressive strut of length l and constant cross section A. The
strut is pin-jointed in both ends, see Figure 1 below. We analyze the strut using the method
of material indices described in [1].

We want to find the optimal material of the strut in the sense of minimum weight, under
the four constraints: 

1. The strut will not fail due to yielding.
2. The strut will not contract more than a given amount.
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3. The strut will not buckle.
4. The strut will not fail due to impact damage.
In short, we have the following design requirements: 

Function: Compressive strut. 
Objective: Minimize the mass of the strut.
Constraints: Must not fail, σ < σf .

Maximal contraction, δ < δmax.
Will not buckle, F < Fcrit.
Toughness against impact, σ < σcrit .

Assume that the strut is made of a material with density ρ. Then we find the cross section
A by 

(1)

The shape of the cross section will greatly affect the behavior in for instance buckling due
to different second moments of area. We therefore introduce a parameter ϕ that we call shape
factor in order to determine the effectiveness of the chosen shape. For a given cross-section
area A, take ϕ to be the ratio between the second moment of area I of the chosen shape to
that of a solid circular section, I0, with the same cross section A. Now 

(2)

where A0 = A is the cross section of a solid circular section of radius r. Hence

(3)

2.1. MATERIAL INDEX FOR FAILURE STRENGTH
If F is the applied force, the compressive stress σ in the strut will be

(4)

The constraint σ < σf thus yields 
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Figure 1 A compressive strut. 



By rearranging, we find that 

(6)

This means that in order to find the minimal mass of the strut under the failure constraint,
we need to minimize ρ /σf . We should thus maximize the material index 

(7)

Taking logarithms on both sides, we see that we should choose the materials lying above
and to the left of the line 

(8)

in a ρ − σf diagram using the software Cambridge Engineering Selector. See Figure 2 below. 

2.2. MATERIAL INDEX FOR STIFFNESS
Hooke’s law in one dimension states that 

(9)

where E is Young’s modulus for the material and 
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(10)

the corresponding strain. Hence we get the elastic compression 

(11)

The constraint δ < δmax thus yields 

(12)

which implies that 

(13)

This means that in order to find the minimal mass of the strut under the stiffness
constraint, we need to maximize the material index 

(14)

Materials with high values of M2 are plotted in a ρ – E diagram using Cambridge
Engineering Selector in Figure 3 below. 
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2.3. MATERIAL INDEX FOR EULER BUCKLING
The strut will buckle if the applied compressive load F exceeds the critical buckling load Fcrit
given by 

(15)

where the constant k depends on the end supports. For the case of pin-jointed ends, k is 1.
Using the shape factor ϕ to express I, the constraint F < Fcrit thus implies 

(16)

Hence we get that 

(17)

By rearranging and taking the square root, we find that 

(18)

This means that in order to find the minimal mass of the strut under the Euler buckling
constraint, we need to maximize the material index 

(19)

Materials with high values of M3 are plotted in a ρ – E diagram using Cambridge
Engineering Selector in Figure 4 below. Note that the slope of the selection line is different
compared to Figure 3, due to the changed exponent on E in M3. 

Of course we can further minimize the mass by maximizing the shape factor ϕ. However,
this will also affect the failure modes of the strut. This is analysis is carried out in the section
Failure modes below.

2.4. MATERIAL INDEX FOR TOUGHNESS AGAINST IMPACT
We assume that the surface of the strut can be modeled as a thick plate where all energy
from impact will be absorbed by contact indentation. This is in general not true since energy
also will be absorbed in shearing, bending and membrane effects. However, the general
situation is way too complicated to deal with here so we need to simplify the problem. On
the other hand, we are not interested in a quantitative estimate of the absorbed energy, but
rather the qualitative behavior in order to find the correct material index for this physical
situation. 
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We assume that the impacting object is spherical with radius R, mass m and velocity v.
This gives an impact energy (equal to the kinetic energy) of 

(20)

We also assume that all impact energy is absorbed by the indentation. A reasonable
assumption for the contact stress is given by the Hertzian law (see e.g [2], [3], [4] or [5])
which states that 

(21)

where F is the impact force, b the radius of the indented section, y the relative motion of the
center of the ball compared to the indented surface and E the corrected modulus 

(22)

where indices 1 and 2 corresponds to the ball and plate, respectively. We thus get that 
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The Hertzian theory then predicts a maximal (tensile) contact stress in the plate of 

(25)

when y = ymax. Now the absorbed kinetic energy must be equal to the work done by indenting
the plate, that is 

(26)

Inverting this relation gives us the maximal indentation ymax as 

(27)

Hence the maximal stress becomes 

(28)

The Griffith criterion for crack growth states that a crack of size a will grow if the stress
exceeds σcrit given by 

(29)

where Y is a geometric parameter close to one and KIC the fracture toughness of the material,
see [6]. To avoid fracture, we thus need to fulfill the inequality σcrit < σmax which means that 

(30)

that is, 

(31)

This means that in order to find the material that will absorb maximal impact energy under
the no crack growth constraint, we need to maximize the material index
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Materials with high values of M4 are plotted in an E − KIC diagram using Cambridge
Engineering Selector in Figure 5 below. 

2.5. OPTIMAL MATERIAL CHOICE FROM MATERIAL INDICES
The graphs of the three material indices M1, M2, and M3 suggest that the strut should be
constructed from (unidirectional) carbon fiber composites. Possible other choices include
aramid fiber composites, certain woods and certain extra durable steels. Moreover, these
graphs also show that certain ceramics have high values of the material indices, but we
exclude them due to their brittle nature as well as their somewhat complicated manufacturing
process. We also exclude diamond for obvious reasons. 

Material index M4 suggests that carbon fiber composites with fiber direction 90° are
especially good to absorb impact energy, due to their ability to capture cracks growing
transversally to the fiber direction. Therefore, in order to get a good composite that will
withstand fracture, we need to laminate the composite with plies having fiber directions other
than 0°. We will see in next chapter that material index M3 is of special importance, since the
dominating failure mode will be Euler buckling.

3. FAILURE MODES OF A TUBULAR COLUMN
For simplicity, we consider a thin walled tubular column with circular cross section loaded
in compression by a force of F. Suppose that the column is made from a material having
stiffness E, Poisson’s number ν and yield stress σf . Moreover, it has length l, outer radius Ro
and inner radius Ri. We also assume that both ends are pin-jointed. Let t be the wall thickness
of the tube and r its mean radius, i.e. 

(33)
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Figure 5 Materials with high index M4 lie above the indicated line.



Int. Jnl. of Multiphysics Volume 3 · Number 3 · 2009 243

We then have that 

(34)

which gives us the shape factor for a thin walled tube (t<<r) as 

(35)

We consider four different failure mechanisms: 
1. General (Euler) buckling, where the critical buckling load is

(36)

Using the shape factor ϕ, we get that 

(37)

Hence the failure stress for mechanism 1 is 

(38)

2. Local (chessboard) buckling occurs at the failure stress
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where α is a parameter in the range 0.4–0.6, see [7]. 
3. General yield (crushing) of the column occurs at the failure stress

(40)

4. Static axial plastic buckling occurs at the failure stress

(41)

see [8]. 
We find the boundaries between these four failure mechanisms expressed

in the dimensionless load factor F/(σf l2) and the shape factor ϕ by pair-wise
equating the corresponding stress expressions. Hence: 
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1. Boundary 1–2:

(42)

2. Boundary 1–3:

(43)

3. Boundary 1–4:

(44)

4. Boundary 2–3:

(45)

5. Boundary 2–4:

(46)

6. Boundary 3–4:

(47)

We write the first three boundaries in logarithmic form 

The last three boundaries only depend on ϕ, but not on the load factor F/(σf l2). These
three boundaries coincide when the shape factor ϕ equals the value ϕ34, that is,
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which occurs for a failure strain σf /E of about 

(50)

when α is taken to be 0.5. Since this value is much higher than the failure strain of all
interesting materials, we conclude that we always will have the same order of the boundaries
2–3, 2–4 and 3–4, independent of the failure strains we will consider. 

The dominating failure mechanism will be the one that occurs for the lowest stress σ.
Thus we make the following comparisons:

1. Comparison of σ1 and σ2.
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2. Comparison of σ1 and σ3.
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3. Comparison of σ1 and σ4.
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4. Comparison of σ2 and σ3.
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which implies that failure mechanism 3 dominates mechanism 2 left of the
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5. Comparison of σ2 and σ4.
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6. Comparison of σ3 and σ4.

(56)

which implies that failure mechanism 3 dominates mechanism 4 left of the
3–4 line and that mechanism 4 dominates mechanism 3 right of the 3–4 line. 

We now assume that the column is made by a carbon fiber composite with a typical failure
strain of εf = σf /E = 1.4%. We construct a diagram with logarithmic scales where the four
failure mechanisms are shown. Let the y-axis be the load factor F/(σf l2) and the x-axis be the
shape factor ϕ. First we note that the failure strain εf= 0.014 yields that 

(57)

which means that ϕ34 < ϕ23 < ϕ24.
Considering all details above, we can construct the map shown in Figure 6 above. For a

typical long and slender strut with a load factor of about 10−6 and shape factor in the range
5–20, we see that the dominating failure mechanism will be general Euler buckling. 
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Remark: The actual profile of the strut is of course more always complicated than a circular
tube. However, we can do a similar analysis using the corresponding shape factor ϕ for the
direction in which the strut is mostly prone to buckle (that is, in the direction in which the
second area moment of inertia is smallest). Then the failure of the strut will be described by
a similar diagram as above and the general conclusion will be the same.

4. HOMOGENIZATION OF HETEROGENOUS MEDIA
We have come to the conclusion that we need to construct the strut from a carbon fiber
composite. However, composites introduce a heavy computational problem when analyzed
by typical finite element software due to their inhomogeneous microstructure. More specific,
the elastic constants for fibers and matrix will oscillate fast in space, making the problem
virtually impossible to solve numerically. Instead one looks for a so called effective material
that behaves like the composite from a macroscopic point of view. The mathematical
problem of finding the effective material is called homogenization. 

Let us consider a linear elastic body which occupies a region Ω in R3 and introduce a
Cartesian coordinate system x = (xi). Moreover, we introduce σ = (σij), f = (fi), t = (ti), u = (ui)
and n = (ni) as the stress tensor, the internal force field, the surface force field, the
displacement field and the outer normal to the boundary ∂Ω of Ω, respectively. The
governing equilibrium equation is then 

(58)

where Γ1∪Γ2=∂Ω and Γ1∩Γ2=∅. We define the strain tensor e=(eij) by 

(59)

Hooke’s law states that the stress σ is related to the strain e by the relation σij= Cijkl ekl,
where Cijkl is the fourth order elastic tensor (or stiffness tensor) of the material that occupies
Ω. It is well known that the stiffness tensor has the symmetries Cijkl = Cjikl = Cijlk = Cklij ,
effectively reducing the number of independent constants in the stiffness tensor. Further
symmetries in the stress and strain tensors, σij = σij and eij = eji, respectively, then imply that
we can represent Hooke’s law in the (symmetric) matrix form 
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where the engineering strains γij are defined as 

(61)

The equilibrium equation thus becomes 

(62)

Let us now assume that the body consists of two or more different linear elastic materials
which are periodically distributed in the sense that we can define unit cells Y which are
periodically repeated, see Figure 7 below. 

For such a material, the stiffness tensor Cijkl=Cijkl (x) will oscillate periodically. To model
the heterogeneous material, we therefore introduce a local variable y=x/ε and assume that 

(63)

is Y-periodic. By Y-periodicity we mean that Cijkl (y1) = Cijkl (y2), whenever y1 and y2 occupy
the same positions in their corresponding cells. This means that ε is a parameter for varying
the fineness of the microstructure, see Figure 8. 

We also assume that the functions Cε
ijkl satisfy the following coercivity and continuity

conditions 

(64)

for every symmetric real-valued tensors ξij where 0 < α ≤ β < ∞. Physically this means that
the strain energy is positive and bounded. 

We now study the following class of problems, one for each choice of ε, 

(65)

The main idea in the homogenization theory is to approximate the solutions uε of our
model problem by means of a function u which solves the problem corresponding to a
homogeneous material, 
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where C*
ijkl is a constant tensor and gi is defined below. Mathematically speaking, the

solutions uε converge weakly to the solution u as ε → ∞. The homogenized tensor may be
interpreted as the physical parameters of a homogeneous material whose overall response is
“close’’ to that of the heterogeneous material, when the size of the cell tends to zero. We say
that C*

ijkl is the effective stiffness tensor. Using some rather deep results from functional
analysis and the theory of partial differential equations, it is possible to show that the
effective tensor C*

ijkl can be given explicitly by the formula 

(67)

where Umn=Umn(y) are the weak solutions of the Y-cell problem 
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Figure 7 Examples of Y-cells for a periodic material.

Figure 8 The microstructure becomes finer as the parameter ε becomes smaller
(left to right).
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See for instance the books by [9], [10], [11], [12], [13], [14] or [15] for proofs of this
result. From the proof of the theorem, we also get the result that 

(69)

Let us now consider this cell problem. We have that 

which can be rewritten as 

where Vi
mn=δimyn which, written out in full, says that 
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etc. This gives the strains 
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Hence we have that 
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etc., where 
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Thus if we put Wmn=Umn+Vmn, our cell problem becomes 
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with the boundary conditions that points on opposite faces (with normals parallel to the
ym -direction) of the cell are coupled to each other such that they move identically, except
in the ym -direction where they will move equally up to the difference ∆ym (the length of
the cell in the ym -direction). We now solve the cell problem for all Wmn using the
corresponding boundary conditions. We then find the effective stiffness coefficients as 

(77)

where σmn =(σij)
mn are the corresponding stress tensors from the cell problem for Wmn . In

other words, we get the effective stiffness coefficients C*
ijmn as the average stresses σij from

the solutions of the cell problems with the boundary conditions described above. See for
instance the articles [16], [17], [18] and [19], for more applications of the homogenization
method to composite materials. 

5. NUMERICAL COMPUTATION OF EFFECTIVE STIFFNESS
We showed earlier that we need to solve a family of cell problems in order to find the
effective properties. We will here give a detailed description of a model to generate a
composite with pseudorandom microstructure and then give a numerical example on
homogenization of it.

5.1. BACKGROUND
The cell problem is defined over a periodic cell with the assumption that the underlying
microstructure is periodic. However, the choice of microstructure will greatly influence the
numerical values we get. Should we for instance use rectangular or hexagonal stacking of
the fibers? 

The rectangular cell (see Figure 9) has the advantage that it is easy to implement and the
hexagonal cell (see Figure 10) has the advantage that it will give a transversely isotropic
material. However, most people will probably agree that the proper choice of unit cell is
neither of them - fibers are usually randomly distributed in a composite. 

So how can we model such a random structure with our homogenization procedure? A
popular method is to use some kind of Monte-Carlo algorithm to generate a “large enough’’
random microstructure and impose periodic boundary conditions, see e.g. [20], [21], [22] and
[23]. See Figure 11 for a pseudorandom unit cell with 1000 fibers. 

What does then large enough mean? One would argue that the more fibers, the better
agreement with reality. On the other hand, the accuracy of the solution declines as the number
of fibers increase. A compromise of these both extremes can be to generate a large family of
random structures, each with a reasonable number of fibers, and take the average of all
generated coefficients, see e.g. [24], [25], [26] or [27]. 

We chose to follow this latter principle for our computations. We used a Metropolis type
algorithm (see [28]), starting from a periodic rectangular array of 64 fibers. Each fiber is then
given a small tentative displacement in a random direction. The move is accepted or rejected
whether or not the move will cause the fiber to overlap a neighboring fiber. One iteration step
consists of trying to move each fiber once. The length of the displacement is chosen such that
the ratio of acceptance is 30–50%. The procedure is repeated several times until an
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equilibrium state is obtained, see Figure 12. We used 2000 iterations for each of totally 1000
different realizations of pseudorandom cells. 

Each cell problem was then solved using COMSOL MULTIPHYSICS and the
corresponding effective properties for each realization were computed, see Figure 13 below
for an example with 9 fibers. Finally, the mean values were taken for each coefficient. The
choice of 64 fibers in each cell is motivated by the results in the articles [25] and [27], where
it is shown that the standard deviation (as expected in a Monte Carlo simulation, see e.g.
[29]), is reciprocally proportional to the square root of the number of fibers. However, in this
case when we deal with only a few (2–3) significant figures, the mean values for the effective
properties are stable already at one fourth of this number of fibers. So there is no need to lose
accuracy by choosing too many fibers in each cell. 

5.2. A NUMERICAL EXAMPLE
Let us consider a typical carbon fiber composite consisting of transversely isotropic carbon
fibers with a volume fraction of Vf=60% having the mechanical properties EL=230 GPa,
ET=40 GPa, vTT=0.20, vLT=0.256, GTT=16.7 GPa, GLT=24 GPa, and an isotropic polymer
matrix having the properties E=2.9 GPa, v=0.30.

It is a well known fact (see e.g. [30], [31], [32] or [33]) that orthotropic materials
described by the nine constants E1, E2, E3, v12, v13, v23, G12, G13, G23 have the stiffness tensor
(in matrix form)
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Figure 9 Stress distribution (in x1-direction) in a rectangular unit cell.

Figure 10 Stress distribution (in x1-direction) in a hexagonal unit cell.



where the elements Cijkl are determined from the inverse matrix of C (the so called
compliance matrix S), given by
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Figure 11 A pseudorandom unit cell with 1000 fibers. 

Figure 12 One realization of a pseudorandom unit cell with 64 fibers. 
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Transversely isotropic materials are special cases of orthotropic materials having one
plane of isotropy (here the x2x3-plane) where 
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Figure 13 Stress distribution in the x1-direction for a pseudorandom cell with 
9 fibers. 

(79)



Furthermore, isotropic materials have infinitely many planes of isotropy, yielding 

Thus we easily find the corresponding stiffness matrices for the matrix and the fibers.
Solution of the 1000 cell problems in COMSOL MULTIPHYSICS then yielded an average
effective stiffness tensor C=Cijkl with the elements 

Moreover, since 

(83)

we see that the resulting homogenized composite (not surprisingly) is transversely isotropic,
having the x2x3 -plane as the plane of isotropy and x1 as the longitudinal direction L.
Inverting the stiffness matrix gives us the corresponding compliance matrix, from which we
finally extract the effective engineering constants 
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6. CONCLUSION
We have considered a typical optimization problem arising from structural mechanics. We
saw that different load cases led to different optimal material choices. We found that for out
typical case, a unidirectional carbon fiber composite was best suited for minimization of the
mass of our compressive strut. We also investigated different failure modes to motivate the
choice of Euler buckling as the most important load case. 

The choice of fiber composite materials forced us to use mathematical homogenization as a
tool for finding the effective elastic properties. We developed a method to approximate a random
microstructure by generating a family of pseudorandom cell problems. Finally, we solved an
example of a carbon fiber composite and computed the corresponding elastic tensor. 

Summing up, we have shown that typical optimization situations in contemporary
engineering often lead to modern material choices such as composite materials. Moreover,
the heterogeneous microstructure in such materials requires complicated mathematical tools
such as homogenization for the determination of its physical properties.
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