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ABSTRACT

In the paper the application of uncertainty analysis performed for

microelectromechanical resonator is presented. Main objective of

undertaken analysis is to assess the propagation of considered uncertainties

in the variation of chosen dynamic characteristics of Finite Element model of

microresonator. Many different model parameters have been assumed to

be uncertain: geometry and material properties. Apart from total uncertainty

propagation, sensitivity analysis has been carried out to study separate

influences of all input uncertain characteristics. Uncertainty analysis has been

performed by means of fuzzy arithmetics in which alpha-cut strategy has

been applied to assemble output fuzzy number. Monte Carlo Simulation and

Genetic Algorithms have been employed to calculate intervals connected

with each alpha-cut of searched fuzzy number. Elaborated model of

microresonator has taken into account in a simplified way the presence of

surrounding air and constant electrostatic field.

1. INTRODUCTION
Launching a new product into market comes after its virtual and real prototyping is
accomplished [1]. Investigation of its performance is related to a number of dynamic and
static properties. During virtual prototyping they are studied via deterministic and
nondeterministic simulations performed for numerical models elaborated e.g. with Finite
Element Method (FEM). As far as nondeterministic analyses are of engineer’s concern an
uncertainty analysis is used to study the propagation of assumed parameters variabilities in
chosen characteristics. Uncertainty analysis allows for the introduction in the analysis the fact
that product’s properties in reality characterize uncertainty. It appears as subsequent items of
the same mechanical structure do not have the same geometrical dimensions, are not made
with totally same material and finally do not operate in the same environmental conditions.
Uncertainties always appear and their introduction into carried out analyses enables to yield
better results and helps to predict scatter of product’s properties while operation.

As manufacturing processes of microelectromechanical systems (MEMS) [2] do not
guarantee infinite repeatability of their characteristics, technological and material
uncertainties have to be taken into account to make results of computer simulations as close
to reality as possible [3,4]. Performed uncertainty analyses enable more realistic ranges of
variation of analyzed characteristics e.g. in terms of present geometry imperfections and
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changes of material properties of studied device. For uncertainty analysis, microresonator
has been chosen as one of most commonly manufactured and exploited MEMS [5,6,7]. It is
used e.g. in filters, accelerometers, clock and frequency reference applications.
Microresonator with two comb drives and area-efficient folded flexures is studied. In
performed simulations multiphysics approach has been considered and phenomena of air
damping and electrostatic field have been modeled. Selected operational microresonator
resonance frequency has been studied because of its crucial influence on device
performance. In present work, uncertainty analysis has been performed by means of fuzzy
numbers theory combined with alpha-cut strategy. Output fuzzy numbers have been
assembled with intervals obtained by applications of Monte Carlo Simulation (MCS),
supported by Latin hypercube procedure of samples generation, and Genetic Algorithms
(GA).  Additionally, a sensitivity analysis has been carried out to order given uncertainties
according to their separate influences on analyzed frequency of vibration. All considered
uncertain parameters have been modeled by fuzzy numbers with triangular shapes of
membership functions. The set of uncertainties covers a number of geometry characteristics:
length, width, location of comb drive fingers, length and width of flexure beams, thickness
and angle of chamfer of the device. Moreover, some material properties have also been
assumed to vary: Young’s modulus, Poisson’s ratio and density of polisilicon.

2. UNCERTAINTY ANALYSIS, SENSITIVITY ANALYSIS
The objective of uncertainty analysis is to study the overall propagation of identified
uncertainties, called as input parameters of analysis, in interesting characteristics that are, in
turn, output parameters of analysis. In engineering practice it seems to be important issue as, in
reality, variation of crucial product’s properties can be observed and appears due to variation
of technological, material and operational characteristics. Successive products differ one from
another and this fact motivates applications of uncertainty analysis as effective complement to
commonly used deterministic analyses.  In Figure 1, exemplary workflow in uncertainty
analysis is presented. It takes into account both numerical and experimental part of analysis.

All activities involved in the uncertainty analysis can be divided in 3 parts. They, in
sequence, deal with the following tasks:
a) establishing the set of uncertain parameters that are taken into uncertainty analysis;

Identification of uncertainty deals with the elaboration of the set of all uncertain
parameters that are taken in uncertainty analysis. The set should contain parameters of
which real variability can be measured or assumed accordingly to expert’s knowledge.
Moreover, as input parameters of the study, properties which can be controlled during
manufacturing process should be taken into account since this approach potentially
creates possibility of improving product performance via reduction of variability of
output characteristics. The more uncertainties are taken into account the more realistic
results of analysis should be. However, it should be also highlighted strong
recommendation of the usage of sensitivity analysis when dealing with great number
of uncertain parameters. It happens that a number of them can be neglected in
assessment of uncertainty propagation as they do not have any significant influence on
interesting output characteristics. The conclusion is that the introduction of many
different parameters is expected but study of their sensitivity is required to keep only
important ones. Identification of uncertainties should deal with all stages of product’s
life: design, manufacturing process and operation [8,9]. During design uncertainties
can represent: multiplicity of solution concepts, topology and number of structural
elements, incompleteness of information on material properties as well as variety of



Int. Jnl. of Multiphysics Volume 3 · Number 3 · 2009 203

techniques that may be used to model physical phenomena. Uncertainties which appears
in manufacturing process are connected with variation of quality of used processes, tools,
geometry tolerances, quality of joints etc. Finally, at operation uncertainties describe
changes of the environmental and loading conditions as well as changes of properties due
to aging etc.

Modeling of uncertainties deals with the choice of methods that are used to represent
variabilities of input parameters [8,10,11]. On the basis of available measurements and
assumed data the process of uncertainty modeling is performed employing both
probabilistic and possibilistic techniques [10,11]. Depending on the form of
representation of variability and considering accessible statistics, random numbers,
random fields, intervals and fuzzy numbers can be applied. Some help in choice of
method of uncertainty modeling arises from the distinction between reducible and
irreducible uncertainties [8,9,10]. Reducible uncertainty, also called as epistemic
uncertainty or subjective uncertainty, means potential deficiency of knowledge on input
parameters. Present lack of knowledge is gradually eliminated as required information is
gathered. In case of reducible uncertainty it seems to be understandable that possibilistic
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Figure 1 Exemplary workflow of uncertainty analysis.



techniques are preferably used to model this kind of uncertainty. In this case, usually no
statistic data is available. Irreducible uncertainty, called also as aleatory uncertainty or
just simply as variability, represent immanent, inevitable uncertainty, substantially
connected with physics of modeled mechanical system. It is not possible to eliminate
totally this kind of uncertainty. Most known examples of irreducible uncertainties are
manufacturing tolerances or changes of environmental conditions. Irreducible
uncertainties can usually be characterized by statistic parameters such as probability
density functions (PDF) and statistical moments and therefore probabilistic methods can
be applied to elaborate input domain of uncertainty analysis.

b) numerical analyses;
First, numerical deterministic model is required to evaluate value of interesting
characteristics for given combinations of values of input uncertain parameters. In
general however, it would be expected to have nondeterministic model that on the base
of given input uncertainties could directly estimate variability of output characteristics.
The task to obtain that kind of model is not a trivial one especially in the context of
building of FE model. This fact motivates alternative solution which is based on
sequential repetition of numerical simulation of deterministic model in order to
assemble nondeterministic final form of results. To summarize, having elaborated
deterministic model it is also possible to find variability of output characteristics by the
use of deterministic analyses performed in simulation loop until all required
combinations of values of input uncertain parameters are checked accordingly to the
chosen method of assessment of uncertainty propagation.

On the basis on experimental measurements of physical prototypes a parameterized
model is validated, i.e. correct structure of model is found, and updated, i.e. correct
values of model properties are found.

Prepared model is ready to be used in sensitivity analysis. The objective of
sensitivity analysis is to find separated influences of input uncertain parameters on
interesting output characteristics. The results of sensitivity analysis can be used to
eliminate noninfluential parameters from input domain. This possibility is especially
important for applications of possibilistic methods in which exact number of model
realizations is needed and this number strongly depends on the number of input
parameters.

Next step of analysis deals with the assessment of uncertainty propagation.
Depending on both the way how input uncertainties are modeled and required form of
results, a method to assess interesting variability is chosen. All methods can be divided
in 2 groups: probabilistic methods and possibilistic ones [10,11]. Probabilistic methods
use e.g. random variables or random fields. They can be used to find statistical
parameters such us means, standard deviations or higher-order statistical moments. It is
also possible to find histograms of output quantity. MCS is most commonly applicable
probabilistic method, used both in crude version and with more sophisticated methods
of sampling the input parameter domain. The latter approach allows for the reduction of
the required number of samples and better their locations in input parameter space.
Possibilistic methods, in turn, are used when there are limitations concerning knowledge
on the PDF and statistics of the input parameters. The examples of possibilistic methods
are: interval analysis [12], vertex method [10], fuzzy sets theory with Zadeh’s extension
principle [13], transformation method and its modifications [14,15].

c) experimental analyses;
In case when uncertainty analysis based on real measurements is possible, i.e. when a
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series of physical prototypes can be produced, it is possible to verify both the results
obtained in uncertainty analysis supported by numerical simulations and quality of
methods used to assess the uncertainty propagation. Elaborated experimental set-up
should allow for possibly great number of  tested product items and easy measurements
of input and output characteristics.

As stated in the description of numerical case, having information on variabilities of
input parameters, the methodology to find overall uncertainty propagation is chosen
and then applied. Successive items of products are produced and all necessary scatters
and statistics of input uncertainties and output characteristics are gathered. On the basis
of measurements final form of results representation is then assembled.

In presented paper only numerical part of uncertainty analysis is described. Amongst all
uncertainties which are present in MEMS only geometrical and material ones have been
introduced and their propagation in FE model of microresonator has been studied. Possible
defects and faults have not been considered in the work as they have been treated as
catastrophic changes of device properties that disable its proper operation [16]. In present
study theory of fuzzy numbers with alpha-cut strategy have been applied to find uncertainty
propagation.

3. FE MODEL OF MEMS RESONATOR, STUDIED
CHARACTERISTICS
FEM has been used to model MEMS resonator as this method seems to be most commonly
applied to represent properties of real mechanical structures in numerical manner. The
variability of chosen operational resonance frequency has been chosen as the object of the
study. In Figure 2 the elaborated model and chosen operational mode are presented. Nominal
value of studied natural frequency equals 136,962Hz.

Presented model is built with movable shuttle mass suspended over the substrate using 2
area-efficient folded flexures. MEMS resonator is equipped with 2 comb drives that allow
for activating the device and measurement the displacement along longitudinal axis x. The
microresonator can be externally actuated to vibrate with operational frequency by the use of
mounted comb drives. The overall dimensions of the movable part are 288µm and 186µm.
The thickness of microresonator equals 3µm. The gap between moving part and substrate is
3µm. Model mesh consists of 634 finite elements (FE) connected in 2072 nodes. Figure 3
presents the description of structural parts of the model.

Multiphysics approach is considered in the model. Air damping and electrostatic field are
of concern and their presence is introduced in a simplified way [2]. Additional elastic and
damping discrete elements have been introduced to model mentioned phenomena. All 6
locations (3 pairs at top and bottom respectively within horizontal surfaces in plane x-y) of
used 2 springs and 6 dampers are presented in Figure 4. Free element connections are fixed
to the substrate.

Introduced mechanical elements represent the influences of surrounding air
(dampers) and electrostatic field (springs) considered only for axis x, along which the
motion of movable part can be observed at resonance operation. The influences that
appear for other normal modes are intentionally skipped for the simplicity of the
calculations. Introduced elements have been modeled using PBUSH/CBUSH elements
in MSC/ Nastran software.

Resultant stiffness and damping coefficients are calculated on the basis of the geometry
characteristics of current realization of FE model and then used as properties of introduced
discrete elements. This approach is treated as an alternative to the formulation of coupled
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problems [2] and enables for significant time-savings. For presented case time needed to
perform whole calculation loop using simplified way do not extend 1 minute whereas in case
of solution of coupled problem the same results can be achieved after few minutes. At this
point, it should be mentioned that in case when only one normal mode of presented model is
studied, there is a possibility of farther simplification and shortening the computational time.
As in modal analysis, each normal mode can be substituted by a one-degree-of-freedom
system, i.e. simple oscillator. Properties of this oscillator, i.e. resultant mass, stiffness and
damping coefficient, could be calculated by the use of empirical relationships elaborated on
the basis of results of numerical simulations or measurements of real characteristics.
However, the quality of used empirical equations could be problematic, especially in the
context of great number of model parameters with many geometry characteristics. In fact, the
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procedure of mesh morphing of FE model as well as its simulation take some time but also
enable to consider all changes in geometry easily and accurately.

3.1. AIR DAMPING IN FE MODEL
In the model 4 types of phenomena related to air damping have been considered:
a) slide-film damping force;

It appears when parallel movement of an object with respect to surrounding air is
observed. Viscous damping is then interpreted as coming from force arising in presence
of relative displacement of neighboring layers of fluid that is in contact with object
immersed in it. During calculation area of longitudinal cross-section of moving object
is important.

b) drag force;
It is observed when there is a movement of an object through the air. I this case its area
of transversal cross-section is important.

c) squeeze-film damping force;
It appears in case when an object moves against other element which is very close
located. This kind of damping expresses the phenomenon of under- or overpressure that
occurs in case of small gaps.

d) acoustic energy dissipation;
It represents energy dissipation due to activating acoustic waves spreading through air.
Each object vibrating in the fluid is a source of acoustic energy.

All damping coefficients are calculated separately for each damper depending on the part
of FE model for which represent phenomenon appears.

As far as slide-film damping is of concern, 2 cases have been considered. First one
assumes Couette flow which means the situation when gap dimension between movable part
and surrounding substrate is lower than effective decay distance δ formulated by the
following expression [17]:

(1)δ µ ρω= 2 /

Top
Bottom

3

y

x

1

2

(fixed to the
substrate)

Top
Bottom

(fixed to the
substrate)

Figure 4 Discrete elements used to represent air damping and electrostatic field.



208 Uncertainty analysis for dynamic properties of MEMS resonator supported by fuzzy arithmetics

where: µ is kinematic viscosity of fluid (1.81 · 10–5Pa · s for air), ρ is fluid density (1.2kg/m3

for air) and ω is circular frequency of vibration. For elaborated model parameter  δ equals
5.7µm. Considering horizontal surfaces of model (in plane x-y), Couette flow has been
assumed under the shuttle mass since the distance between it and anchor is 3µm. Second kind
of flow which is Stokes flow should be taken into account when the distance gap between
objects in fluid is grater than δ. This case appears over modeled MEMS resonator. Similarly,
depending on distances between movable resonator parts and substrate, also for all sidewalls
(vertical surfaces of model) both Couette and Stokes flows have been introduced to represent
correctly the phenomenon of slide-film damping.

Figure 5 and 6 present all areas that have been considered during calculation damping
coefficients expressing phenomenon of slide-film damping. Figure 5 relates to horizontal
surfaces of moving parts whereas Figure 6 defines vertical ones. Used numbering of areas
marks related pairs of dampers.

To calculate related damping coefficients c the following formulas have been used [17].
In case of Couette flow slide-film damping force F can be calculated with the expression:

(2)

whereas for Stokes flow F can be found with the formula:

(3)

where A is area of longitudinal cross-section of moving part of microresonator, d is thickness
of air film, is velocity of shuttle mass along axis x.

All areas considered for the phenomena of drag force, squeeze-film damping and energy
dissipation via activating acoustic waves are presented in Figure 7.
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Figure 5 Slide-film damping phenomenon - considered horizontal areas of
moving parts.
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Damping coefficients which have been used to represent presence of drag force can be
calculated with the expression [17]:

Stokes flow

3
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Figure 6 Slide slide-film damping phenomenon - considered vertical areas of 
moving parts.

Figure 7 Drag force, squeeze-film damping force and acoustic wave dissipation
phenomena - considered areas of sidewall surfaces of moving parts.
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(4)

where r stands for characteristic dimension. It represents a half of grater dimension in case
of rectangular shape of object moving through air.

In case of squeeze-film damping force it is calculated with following expression:

(5)

where L, B are dimensions of rectangular shape (assuming that L > B) and factor is
found by the equation [17]:

(6)

Finally, damping force connected with energy dissipation via acoustic waves has been
considered. Resistant damping force can be calculated with the following formula [17]:

(7)

where υ is the speed of sound wave in the fluid (343m/s for air), λ is wave length of the
sound and J1 is first order Bessel function.

In Figure 8 bar diagram of all damping coefficients calculated for nominal configuration
of FE model of MEMS resonator is presented.
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Figure 8 Damping coefficients calculated for nominal configuration of FE model.



Analyzing all calculated damping coefficients it can be observed that amongst all slide-
film damping and drag forces characterize the greatest values, with values of 2 orders greater
than those ones calculated for squeeze-film and acoustic wave dissipation. Therefore for
elaborated model it seems to be enough to consider only first 2 kinds of sources of viscous
damping. One can also notice that slide-film and squeeze-film damping mainly influence
shuttle mass whereas drag force and acoustic dissipation mostly affect flexures.

3.2. ELECTROSTATIC FIELD IN FE MODEL
In the model each comb drive has been treated as the set of parallel capacitors. For each
capacitor both normal and tangential forces exist and they both have been considered to
express the presence of electrostatic field. In Figure 9 all considered capacitors are
symbolically presented. They represent the sources of both tangential and normal
electrostatic forces. Fringe effect observed for capacitors has been neglected in the study for
the reason of simplicity of calculation [17].

Figure 9 Areas of all considered capacitors and supplied constant voltages.

The following formulas can be used to calculate electrostatic forces:
a) tangential force:

(8)

b) normal force:

(9)

where b is thickness of comb drive finger, ε is relative permittivity of air (equals 1), ε0 is
permittivity of vacuum (8.854 ⋅ 10–12 F/m for air), V is voltage, d is gap between electrodes
of horizontal or vertical capacitor, A is electrodes area of vertical capacitor, x and x0 are
respectively displacement and initial displacement of shuttle mass along axis x. Tangential
forces calculated for all horizontal capacitors do not depend on the displacement x observed
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for assumed operational mode of vibration. Tangential forces are also constant because
assumed applied voltages are constant. Moreover resultant tangential forces equals 0 as
voltages have the same value and polarization. Therefore, described forces have not been
taken in calculations. In case of normal forces, resultant stiffness coefficient can be
calculated by the formula:

(10)

which is derived from Eqn (9). Concluding, only tangential forces have been considered to
determine approximated stiffness coefficients k of 2 springs connected to shuttle mass
(location is marked as 3 in Figure 4). The sum of 2 nominal resultant coefficients k equals
–0.256N/m. Negative value of k means that the introduction of electrostatic field lowers the
resultant stiffness and resonance frequency of the structure vibrating with studied normal
mode. Resultant stiffness of the model considered as one-degree-of–freedom system for
considered normal mode and calculated for nominal configuration equals 52.0N/m.

For nominal conditions the comparison has been made between results obtained with
elaborated model, in which air damping and electrostatic field have been considered in a
simplified way, and results of simulation where coupled problem is solved (with ANSYS
software). In case of calculations with MSC/ Nastran the value of resonance frequency
equals 136,962Hz whereas in case of coupled problem solution the value of studied
characteristics is 136,499Hz. Relative difference equals 0.34%.

4. UNCERTAINTIES IN FE MODEL
For uncertainty analysis 65 input parameters have been considered. They represent
variabilities of chosen geometric and material properties of FE model of MEMS resonator.
In Table 1 information on uncertainty characteristics is presented. All input uncertainties
have been modeled by fuzzy numbers with triangular and symmetrical shape of membership
functions (presented in Figure 10). Assumed maximal ranges of variability correspond to
intervals related to alpha-cut α1 of input fuzzy numbers (where level of membership equals 0).
All input parameters are treated as not correlated.

Table 1 Uncertain parameters

No. of Nominal Maximal range of
parameter Description value variability
1–16 Finger length (comb drives, fingers 1–16) 50µm +/–0.5µm
17–32 Finger width (comb drives, fingers 1–16) 4µm +/–0.1µm
33–48 Finger y-axis shift (comb drives, fingers 1–16) 0µm +/–0.2µm
49–50 Flexure length (flexures 1, 2) 100µm +/–1µm
51–60 Width of flexure beams (flexure beams 1–10) 4µm +/–0.1µm
61 Microresonator thickness 3µm +/–0.2µm
62 Chamfer angle of deposited layers

(moving part only) 0 deg 0–1 deg
63 Young’s modulus of polisilicon 165GPa +/–3% (+/–5GPa)
64 Poisson’s ratio of polisilicon 0.28 +/–10% (+/–0.028)
65 Mass density of polisilicon 2330kg/m3 +/–3% (+/–70kg/m3)
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The alpha-cut strategy has been applied to calculate the output fuzzy numbers describing
the variability of studied resonance frequency. The idea of this approach is presented in
Figure 11 (example considers only 4 alpha-cuts). Described strategy means decomposition
of original input fuzzy numbers into sets of intervals connected to particular alpha-cuts and
then assembling the output fuzzy number with intervals determined during separate
nondeterministic analyses performed for each chosen level of membership function.

In presented study 5 alpha-cuts have been considered. Alpha-cut α5 is related to
deterministic analysis that means nominal configuration of model input parameters. Output
intervals (established by found extreme values) connected with alpha-cuts α1, α2, α3 and α4
have been achieved by the applications of:
a) MCS;

Uniform PDF has been assumed. Technique of Latin hypercube sampling [18] has been
used to better the cover of input parameter domain with combination of values of
uncertainties. 5000 samples per analysis have been considered.

b) GA [19,20];
Used applications of GA feature: 25 individuals, 120 generations, generation gap equals
0.8, probabilities of crossover and mutation equal 0.7 and 0.4 respectively. Two search
tasks have been performed for each alpha-cut. First one for the search of minimal value
and the second one to find the maximal value.
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FE model of MEMS resonator has been parameterized considering all 65 uncertainties.
The whole loop of deterministic calculations used for uncertainty analysis (for both
sensitivity analysis and assessment of total uncertainty propagation by applications of MCS
and GA) is presented in Figure 12. Performed deterministic calculations gives the results of
one realization of FE model related to chosen combination of values of input uncertain
parameters.

All calculations performed within sensitivity analysis and analysis of uncertainty
propagation have utilized the loop described in Figure 12. Scheme used in mentioned above
analyses is presented in Figure 13.

5. SENSITIVITY ANALYSIS
In presented work sensitivity analysis has been performed to find influences of all uncertain
parameters on chosen resonance frequency. Finite difference method has been used as the
approximation of first derivative [21]. The scheme of central plan has been applied for
uncertainties apart from chamfer angle, where forward plan has been used. Results of
sensitivity analysis are shown in Figure 14. Numbering of all microresonator parts presented
in Figure 3 and Table 1 is again used in Figure 14. Presented sensitivities are normalized
accordingly to nominal value of output parameter and calculated with the following
expression (i.e. it stands for relative change of interesting parameter) [22]:

(11)

where is sensitivity (approximation of first derivative ), means given interval

of i-th input parameter (maximal range of variability according to Table 1), and
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Considering given maximal ranges of variabilities of input parameters the most influential
parameters are: chamfer angle (1.74%), mass density (1.54%) and Young’s modulus (1.53%)
of polisilicon as well as all 12 geometric properties of flexures. The influences of other
parameters do not extend 0.05% of nominal value of studied frequency. Most influential 15
parameters should be then taken firstly under consideration during improving the performance
of MEMS resonator. Studied mode of vibration characterizes negligible influence of
thickness. This fact is understandable as increase of the value of this parameter causes both
increase of the mass of moving part and increase of the stiffness of flexures that support it.
Eventually, there is no significant difference in resonance frequency. All parameters that
characterize geometry of comb drive fingers as well as Poisson’s ratio of polisilicon can also
be neglected during analysis.

6. UNCERTAINTY PROPAGATION
The propagation of all considered uncertainties has been assessed by the applications of
MCS and GA. Detailed information on these applications can be found in section 4. Figure
15 shows plots of converges obtained in the application of GA for each considered alpha-cut
and both while minimization and maximization processes. Presented values of resonance
frequency are values of fitness function calculated for best fitted individuals.

Graphical representation of results obtained in uncertainty analysis is presented in Figure 16.
Shown output fuzzy numbers representing variability of resonance frequency have been
assembled using applications of MCS (market with dashed lines) and GA (marked with solid
lines). Figure 16 also contains results of all realizations of FE model for applications of MCS
(marked as signs +). Numerical form of yielded results is presented in Table 2.

Figure 15 Plots of convergences obtained for applications of GA.

It can be noticed significant difference between results yielded by applications of MCS
and GA. This observation can be explained by insufficient number of samples in MCS (5000;
even with Latin hypercube sampling technique) used to cover uniformly and densely enough
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the domain of input parameters. Comparable number of iterations per each alpha-cut (4850)
have been used to obtain extremes of output intervals while using GA. GA seemed to give
more realistic results. However, there is still a justification of using MCS in such case. It can
be applied to confirm that with high probability no global extremes has not been skipped
while using application of GA.

7. CONCLUSION
In the work the application of uncertainty analysis is presented. As the object of the study
chosen resonance frequency of operational normal mode of microresonator has been
considered. Its variability has been assessed by means of fuzzy arithmetics which combined
with alpha-cut strategy seems to be a powerful computational technique for analysis of
uncertainty propagation. Obtained results can be used for inverse analysis as well, i.e. having
output fuzzy number it is possible to predict what should be the maximal variabilities of
input parameters to keep assumed range of variability of output characteristics, accordingly
to chosen level of membership function. Probabilistic methods have been applied to find
extremes of intervals of combined output fuzzy numbers, i.e.: MCS and GA. Noticed
difference in yielded outcomes apparently appeared as a result of quite small number of
samples in the application of MSC. 5000 iterations have not been enough to cover properly
whole input domain but confirm that with high probability no global extremes has not been
skipped by the application of GA.
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Figure 16 Uncertainty propagation for operational resonance frequency – output
fuzzy numbers.

Table 2 Uncertainty propagation for operational resonance frequency – numerical
representation

α1-cut α2-cut α3-cut α4-cut α5-cut
Parameter MIN MAX MIN MAX MIN MAX MIN MAX NOM
f3 GA 123.7 148.3 126.9 145.7 130.6 142.8 133.3 139.6

137.0[kHz] MCS 129.0 143.7 130.8 141.8 132.8 140.6 134.9 138.4



For performed analysis a number of different kinds of uncertain parameters have been
assumed representing both geometric imperfections and variabilities of material properties.
Performed sensitivity analysis can be used while improving manufacturing process since
influences of given uncertainties on studied characteristics have been found and most
influential input parameters have been highlighted. As far as geometric parameters are of
concern, flexure geometry and chamfer angle are most important for variability of studied
frequency. It is so because the resultant stiffness for operational mode strongly depends on
stiffnesses of flexures. Variability of resonance frequency is slightly influenced by changes
of thickness of the device. Amongst material parameters only Poisson’s ratio can be
neglected because of its small contribution in changes of the value of resonance frequency.

In performed analyses FE model of MEMS resonator has been build and then
parameterized accordingly to the list of all assumed uncertainties. The introduction of
discrete mechanical elements allows for consideration of multiphysics in the FE model.
Parameterized dampers and springs can effectively approximate the presence of air damping
as well as electrostatic field. Amongst all studied damping phenomena slide-film damping and
drag force should be of engineer’s concern as they mostly influence calculated damping
coefficients.
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