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ABSTRACT

We use a nonlinear finite element (FE) method model to compare,

optimize and determine the limits for useful geometries of microfluidic

valves in elastomer polydimethylsiloxane (PDMS). Simulations have

been performed with the aim of finding the optimal shape, size and

location of pressurization that minimizes the pressure required to operate

the valve. One important constraint governing the design parameters is

that the stresses should be within elastic limits, so that the component

remains safe from any type of structural failure. To obtain reliable results,

non-linear stress analysis was performed using the Mooney-Rivlin 9

parameter approximation which is based on the Hyper Elastic Material

Model. A 20 noded brick element was used for the development of FE

model. Mesh sensitivity analysis was also performed to assess the quality

of the results. The simulations were performed with commercially

available FE modeling software, developed by ANSYS Inc. to determine

the effect of varying different geometric parameters on the performance

of micro-fluidic valves. 

The aim of this work is to determine the geometry of the channel cross-

section that would result in the largest deflection for the least applied

pressure, i.e. to minimize the pressure needed to operate the valve.

1. INTRODUCTION
The field of micro-fluidics lies at the interface between engineering, chemistry, and
biology. This field has seen rapid growth as numerous applications have evolved in
biology, chemistry, diagnostics and analysis for the control of picoliter volumes on chips.
A common application is the development of lab-on-a-chip systems that could be used to
explore single cell and single molecule biophysics, miniaturize chemical assays, reduce
the quantities of reagent and enable massively-parallel, high-throughput biochemical
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analyses. The engineering challenges include optimizing the mixing, reaction, separation,
pre-concentration, and detection of chemical species at the micro-scale [1]. 

Elastomers have evolved as some of the most suitable materials from which such lab on
a chip systems can be constructed, as their low modulus of elasticity permits the miniaturization
of valves. The microfluidic valve is a key component in many lab on chip systems, and
valves of various designs have been fabricated. However, it is worth noting that the design
of these valves has so far evolved mostly by experimentation. We believe that state of the art
engineering design software can be reliably used to better understand, and optimize
elastomer structures. Due to nonlinear behavior and complex geometries within practical
microvalve structures, we could not find reliable macro-models or reduced order models for
predicting the behavior of such structures.

Since it is extremely hard to find local stresses and strains in PDMS elastomer
embedded structures, simulation-based design helps us to determine the mechanical design
parameters, such as the region of operation and points of stresses which help in reliable
designs.

Unger et al. [3] have discussed the fabrication of a micro-fluidic valve in a micro-fluidic
chip constructed from Silicone RTV 615. Similarly, Kartalov et al. [5] have produced a
(linear) model of micro-fluidic valves fabricated from elastomers.  Lotters et al [6] have
investigated the mechanical properties of the elastic polymer (PDMS) for its application in
micro-fluidic chips. The optimization of these systems is complicated by the fact that the
mechanical behavior of PDMS is non-linear [4], which must be taken into account when
using Finite Element Analysis (FEA) techniques [2]. Other complexities of modeling
elastomers are unusually large deformations (which introduces constraints on meshing) and
nonlinear geometry.

This work is related to the optimization of the valve geometry within a microfluidic chip
fabricated from an elastomer (PDMS). Finite element simulations have been performed with
the aim of finding the optimal shape, size, and location of pressure application that
minimizes the external pressure required to operate the valve. One important constraint is
that stresses should be within elastic limits, so that the PDMS elastomer remains safe from
any type of structural failure.

2. OPERATION OF VALVE
The PDMS valve is intended to be used for controlling of fluid flow within a sub-millimeter
wide channel of dimension. Any controlling device, such as electromagnetic solenoids,
pneumatic devices, mechanical actuators, or phase can be used. Moreover, it is not necessary
that the valve should be closed completely in order to stop the flow fully, since, at this small
scale, capillary effects are important. It is assumed that a reduction in the cross-sectional area
of channel of 90% would be sufficient to stop the flow of fluid [7]. This also helps to avoid
contact which occurs between valve surfaces. Contact has additional complexity for
simulation since it introduces a severe non-linearity. Figure 1 shows the schematic diagram
of typical micro-fluidic valve model geometry.

In Figure 1 we show a typical cross-sectional view of an open valve, with a semi-circular
fluid channel. To close this valve, pressure is applied normal to the fluid flow direction and
also normal to the surface of the channel. This deforms the channel and thereby constricts
the flow. Appropriate deformation of the channel will stop the flow completely. 

All layers of simulated valves are out of bulk material of same type. While building valves
using separate layers with multi-layer soft lithography is also common [3], the valves
simulated here can be produced by using molds produced by wax printers or other means.
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Structures without layers avoid problems of delamination and alignment. Using injection
molds also seems more promising in a production setting.

3. FINITE ELEMENT ANALYSIS
3.1. HYPER ELASTIC MATERIAL MODEL
The elastomeric polymer PDMS was selected for the fabrication of micro-fluidic channel due
to its inertness to chemical reactions and its elastic behavior [7]. A typical Stress-strain
behavior of PDMS is shown in figure 2. Also shown in figure 2 is the Non-Linear-Hyper-
Elastic material model with 9th order Mooney-Rivlin approximation [9, 11, 12, 13], which
was used to approximate the behavior of the PDMS in our FE model [5]. 

A 9th order approximation is accurate but requires considerable computational capabilities
[9]. As the model developed was not very large in terms of number of nodes considering a

Pressure

Top

Side

Top view

Valve open Valve closed

Channel

F
lu

id
 fl

ow
 b

lo
ck

ed

F
lu

id
 fl

ow

Value
location

Cross-sectional
area

Normal
pressure

Side view

Figure 1 Schematic diagram of micro-fluidic valve.



higher order model was possible. In an actual fluidic chip, the valves are separated by
appropriately large distances which allow this work to be directly applied to complex chips.

3.2. LIMITATION IN HYPER ELASTIC MATERIAL MODELLING
Most material models in commercially available finite element analysis codes allow the analyst
to describe only a subset of the structural properties of elastomers [2]. These limitations are
thoroughly discussed in the literature [2, 9]. Based on the limitations involved in finite element
hyper elastic material modeling it was assumed that dimensions considered are of pre-strained
model. This does not affect experimental use. One can close the valve once or apply higher than
valve closure pressure to enable pre-strained region for subsequent use.

3.3. FINITE ELEMENT MESH
In finite element analysis too fine a mesh is inefficient, whilst too course a mesh may give
unreliable results. Solid 20 node 186 element was used for building finite element mesh. It
was selected based on the recommendation in ANSYS technical manuals [9, 10].The mesh
for the every model built was refined in order to identify the optimum mesh;  the results of
one of the mesh developed are shown in figure 3 and indicate that that optimized FE Model
has 3645 elements. 

In this analysis element skewness and elements shape after distortion were manually
observed. Keeping in view the results FE mesh pattern was adjusted accordingly. One of the
FE Mesh Pattern of valve model is shown in figure 4.
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Figure 2 PDMS stress vs strain behavior and mooney-rivlin 9 parameters
approximation.
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Due to the symmetric nature of problem half part of model was simulated. Symmetry
boundary conditions were applied on y-z planer side of the model to save time and
computational resources. 

3.4. BOUNDARY CONDITIONS
Commercially available FEM software ANSYS v11.0 [8, 9, 10] has been used. The model
consists of a block of material, with the channel in the centre as shown in figure 5. The cross-
sectional area of the valve was kept as constant and equal to 5000 µm2 for each shape analyzed.

Figure 3 describes the loads and boundary conditions which were simulated. A constant
pressure was applied over the top surface of the block of material, whilst the bottom surface was
constrained to have zero displacement. Pressure due to fluid moving through the channel 
is applied as surface tension in the inner wall of the channel, it was computed using Laplace
relation as suggested in Zhongbing Huang et al [14]. Four different cross-sectional shapes 
were considered. Table 1 summarizes the different cross-sectional shapes which were modeled;
the results obtained under the application of constant pressure of 10 KPa. 

Due to the unsymmetrical nature of semi-circular channel (not symmetrical against
horizontal plane) pressure load was applied in 2 different configurations. Table 1, shows the
displacement of each cross-sectional shape with application of constant pressure. Semi-
Circular Channel (B) shape results in maximum deformation caused by applying the same
normal pressure, to each of the valve shapes; as can be seen the semi-circular channel (B)
appears to give the most favorable results. However, it can also be seen that this shape also
results in one of the highest local stresses, which could cause problems. Thus, the valve based
on the semi-circular channel was selected for further optimization.  The geometric parameters
which can be varied for the semi-circular valve (shown in detail in figure 6) include:

• ‘w’ = width of channel
• ‘h’ = height of channel
• ‘t’ = thickness of PDMS membrane between channel and pressure load

Of the above parameters the effect of varying the thickness of membrane between the load
and channel ‘t’, and height of channel ‘h’ were studied in detail. In all cases the cross-
sectional area was kept constant, and ‘L1’ and ‘L2’ were fixed. The minimum possible
thickness [2, 4] that can be manufactured is 10 µm, so,’t’ was varied from 10 to 30 µm. If ‘h’
is made too small, the flow will be restricted even when the valve is open; hence, ‘h’ was
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always larger than 40 µm [1]. As cross-sectional area of channel kept as constant throughout
so values of ‘h’ and ‘w’ are numerically dependent. Table 2 shows the different
configurations which were simulated. 

4. RESULTS AND DISCUSSION
Contour plots of displacement and stress for each of the configurations in table 2 are given
in table 3, for the pressure loading until valve closes or pressure load reaches to 10 KPa.

The pressure required to close the valve also varied between configurations. Figure 8
shows the pressure required to close the valve, again as a function of ‘h’ and ‘t’. 

Figure 7 clearly shows that that the valve with minimum thickness and minimum height
requires the least applied pressure to close. This is as expected. Also marked on figure 7 is a
region where the valve does not close even if the magnitude of the applied pressure reaches
10 KPa. (i.e. the malfunction region).   

One important result from the simulation is the maximum local stress, since a high stress
could result in mechanical failure. Figure 8 shows the maximum stress in each of the

Table 1 Different cross-sectional shapes and results

FEM Results under the 
Shape Cross-Sectional Shape action of equal load

Box-Shape Maximum Displacement = α
Channel Maximum Stress = β
(Standard)

Eye-Shape Maximum Displacement = 0.90α
Channel Maximum Stress = 0.80β

Semi- Maximum Displacement = 1.18α
Circular Maximum Stress =1.48β
Channel
(A)*

Semi- Maximum Displacement = 1.32α
Circular Maximum Stress = 2.12β
Channel
(B)*

Circular Maximum Displacement = 0.71α
Channel Maximum Stress = 0.71β

α = ratio of ‘h’ after loading and before loading for Box Shape Channel
β = ‘Von Mises Stress’ due to loading for Box Shape Channel
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Table 2 Multiple configurations for ‘h’ and ‘t’ parameters

h = 40.78 µm
Area of Channel h = 56.42 µm h = 48.49 µm h = 43.96 µm w = 176.6 µm
= 5000 µm2 w = 112.8 µm w = 141.7 µm w = 161.3 µm (Fluid Flow Limit)
t = 30 µm 1 2 3 4
t = 20 µm 5 6 7 8
t = 15 µm 9 10 11 12
t = 10 µm 13 14 15 16
(Manufacturing Limit)
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Table 3 Von-Mises stress & displacement contours of 16 configurations

Config. Von-Mises Stress Contour Plot (KPa) Displacement Contour Plot (mm)
1

2

3

4 NODAL SOLUTION

STEP = 1
SUB   = 4
TIME  = .575
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX  = .039385
SMX  = .039385

1

MAR   4  2008
14:03:23

X

Y

Z

0
.004376 .013128 .021881

.017505 .026257
.030633

.035009
.039385

.008752

NODAL SOLUTION

STEP = 1
SUB   = 4
TIME  = .575
/EXPANDED
SEQV          (AVG)
DMX = .039385
SMN  = .094935
SMX  = 119.222

1

MAR   4  2008
14:03:33

X

Y

Z

.094935
13.331 39.804 66.276

53.04 79.513
92.749

105.985
119.222

26.568

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX  = .041527
SMX  = .041527

1

MAR   4  2008
11:44:17

X

Y

Z

0
.004614 .013842 .02307

.018456 .027684
.032298

.036912
.041527

.009228

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV           (AVG)
DMX  = .041527
SMN  = .216005
SMX  = 170.183

1

MAR   4  2008
11:44:34

X

Y

Z

216005
19.101 56.872 94.642

75.757 113.528
132.413

151.298
170.183

37.987

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM           (AVG)
RSYS = 0
DMX  = .029864
SMX  = .029864

1

MAR   7  2008
12:51:09

X

Y

Z

0
.003318 .009955 .016591

.013273 .019909
.023228

.026546
.029864

.006636

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV           (AVG)
DMX = .029864
SMN  = .117102
SMX  = 159 . 849

1

MAR   7  2008
12:51:26

X

Y

Z

.117102
17.865 53.361 88.857

71.109 106.605
124.353

142.101
159.849

35.613

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM           (AVG)
RSYS = 0
DMX  = .017722
SMX  = .017722

1

MAR 17 2008
10:15:03

X

Y

Z

0
.001969 .005907 .009846

.007877 .011815
.013784

.015753
.017722

.003938

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV           (AVG)
DMX  = .017722
SMN  = .166494
SMX  = 162.19

1

MAR 17 2008
10:15:19

X

Y

Z

.166494
18.169 54.174 90.18

72.177 108.182
126.185

144.188
162.19

36.172
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Table 3 (continued)

Config. Von-Mises Stress Contour Plot (KPa) Displacement Contour Plot (mm)
5

6

7

8 NODAL SOLUTION

STEP = 1
SUB   = 3
TIME  = .35
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX  = .041477
SMX  = .041477

1

MAR   7  2008
12:30:04

X

Y

Z

0
.004609 .013826 .023043

.018434 .027651
.03226

.036869
.041477

.009217

NODAL SOLUTION

STEP = 1
SUB   = 3
TIME  = .35
/EXPANDED
SEQV          (AVG)
DMX = .041477
SMN  = .118592
SMX  = 107.481

1

MAR   7  2008
12:30:14

X

Y

Z

.118592
12.048 35.906 59.764

47.835 71.693
83.623

95.552
107.481

23.977

NODAL SOLUTION

STEP = 1
SUB   = 4
TIME  = .575
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX  = .040846
SMX  = .040846

1

MAR   7  2008
12:40:22

X

Y

Z

0
.004538 .013615 .022692

.018154 .027231
.031769

.036308
.040846

.009077

NODAL SOLUTION

STEP = 1
SUB   = 4
TIME  = .575
/EXPANDED
SEQV          (AVG)
DMX = .040846
SMN  = .189218
SMX  = 125.217

1

MAR   7  2008
12:40:36

X

Y

Z

.189218
14.081 41.865 69.649

55.757 83.541
97.433

111.325
125.217

27.973

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX  = .034784
SMX  = .034784

1

MAR   6  2008
16:36:20

X

Y

Z

0
.003865 .011595 .019324

.015459 .023189
.027054

.030919
.034784

.00773

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV          (AVG)
DMX = .034784
SMN  = .256692
SMX  = 209.928

1

MAR   6  2008
16:36:33

X

Y

Z

.256692
23.553 70.147 116.741

93.444 140.037
163.334

186.631
209.928

46.85

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX  = .027464
SMX  = .027464

1

MAR   4  2008
13:39:11

X

Y

Z

0
.003052 .009155 .015258

.012206 .01831
.021361

.024413
.027464

.006103

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV          (AVG)
DMX = .027464
SMN  = .168434
SMX  = 256.677

1

MAR   4  2008
13:39:23

X

Y

Z

.168434
28.669 85.671 142.673

114.172 171.174
199.675

228.176
256.677

57.17
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Table 3 (continued)

Config. Von-Mises Stress Contour Plot (KPa) Displacement Contour Plot (mm)
9

10

11

12 NODAL SOLUTION

STEP = 1
SUB   = 5
TIME  = .30125
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX = .041537
SMX  = .041537

1

MAR   14  2008
13:03:20

X

Y

Z

0
.004615 .013846 .023076

.018461 .027691
.032307

.036922
.041537

.00923

NODAL SOLUTION

STEP = 1
SUB   = 5
TIME  = .30125
/EXPANDED
SEQV          (AVG)
DMX = .041537
SMN  = .09718
SMX  = 113.366

1

MAR   14  2008
13:03:30

X

Y

Z

.09718
12.683 37.853 63.024

50.439 75.61
88.195

100.781
113.366

25.268

NODAL SOLUTION

STEP = 1
SUB   = 4
TIME  = .575
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX  = .043502
SMX  = .043502

1

MAR   14  2008
15:05:41

X

Y

Z

0
.004834 .014501 .024168

.019334 .029001
.033835

.038668
.043502

.009667

NODAL SOLUTION

STEP = 1
SUB   = 4
TIME  = .575
/EXPANDED
SEQV          (AVG)
DMX = .043502
SMN  = .0190528
SMX  = 118.945

1

MAR   14  2008
15:05:50

X

Y

Z

.190528
13.385 39.775 66.165

52.97 79.36
92.555

105.75
118.945

26.58

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM          (AVG)
RSYS = 0
DMN  = .043793
SMX  = .043793

1

MAR   14  2008
12:38:57

X

Y

Z

0
.004866 .014598 .024329

.019463 .029195
.034061

.038927
.043793

.009732

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV          (AVG)
DMX = .043793
SMN  = .279367
SMX  = 176.191

1

MAR   14  2008
12:39:06

X

Y

Z

.279367
19.825 58.916 98.008

78.462 117.554
137.099

156.645
176.191

39.371

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX  = .033352
SMX  = .033352

1

MAR   14  2008
12:06:18

X

Y

Z

0
.003706 .011117 .018529

.014823 .022235
.025941

.029646
.033352

.007412

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV          (AVG)
DMX = .033352
SMN  = .206434
SMX  = 293.516

1

MAR   14  2008
12:06:29

X

Y

Z

.206434
32.796 97.976 163.156

130.566 195.746
228.336

260.926
293.516

65.386
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Table 3 (continued)

Config. Von-Mises Stress Contour Plot (KPa) Displacement Contour Plot (mm)
13

14

15

16 NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM           (AVG)
RSYS = 0
DMX  = .040481
SMX  = .040481

1

MAR 14 2008
14: 14: 23

X

Y

Z

.0
.004498 .013494 .02249

.017992 .026987
.031485

.035983
.040481

.008996

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV           (AVG)
DMX  = .040481
SMN  = .080046
SMX  = 95.566

1

MAR 14 2008
14: 14: 30

X

Y

Z

.080046
10.69 31.909 53.128

42.518 63.737
74.347

84.957
95.566

21.299

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 496562
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX = .043738
SMX  = .043738

1

MAR   14  2008
15:24:10

X

Y

Z

0
.00486 .014579 .024299

.019439 .029159
.034018

.038878
.043738

.00972

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = .496562
/EXPANDED
SEQV          (AVG)
DMX = .043738
SMN  = .169792
SMX  = 117.881

1

MAR   14  2008
15:24:18

X

Y

Z

.169792
13.249 39.407 65.565

52.486 78.644
91.723

104.802
117.881

26.328

NODAL SOLUTION

STEP = 1
SUB   = 8
TIME  = 1
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX = .046755
SMX  = .046755

1

MAR   14  2008
15:36:22

X

Y

Z

0
.005195 .015585 .025975

.02078 .03117
.036365

.04156
.046755

.01039

NODAL SOLUTION

STEP = 1
SUB   = 8
TIME  = 1
/EXPANDED
SEQV          (AVG)
DMX = .046755
SMN  = .317717
SMX  = 220.614

1

MAR   14  2008
15:36:31

X

Y

Z

.317717
24.795 73.75 122.705

98.227 147.182
171.659

196.137
220.614

49.272

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
USUM          (AVG)
RSYS = 0
DMX = .03758
SMX  = .03758

1

MAR   14  2008
15:48:07

X

Y

Z

0
.004176 .012527 .020878

.016702 .025053
.029229

.033405
.03758

.008351

NODAL SOLUTION

STEP = 1
SUB   = 6
TIME  = 1
/EXPANDED
SEQV          (AVG)
DMX = .03758
SMN  = .409097
SMX  = 335.461

1

MAR   14  2008
15:50:48

X
Y

Z

.409097
37.637 112.093 186.549

149.321 223.777
261.005

298.233
335.461

74.865



simulations, as a function of h and t. It is to be noted that we are not considering diffusion
across PDMS. This assumption is particularly good if we use liquid to apply pressure.

As shown in figure 8, the maximum stress occurs when the thickness is at minimum and
height of channel is at a maximum (i.e. configuration 13 in table 2). The configuration which
gave the minimum stress had the lowest value of h and the lowest value of t (configuration 16
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in table 2). However, it should be noted that at low values of h, the thickness, t, has only a
weak influence on the maximum local stress.

5. CONCLUSION
Micro fluidic valve is modeled and analyzed using finite element methods. Optimization
resulted in a configuration that is most suitable as per its operation as valve in microfluidic
chip. It was also found out that optimized configuration is on the verge of fluid dynamic and
manufacturing constraints. Moreover trend to performance of each dimensional parameter is
known (Figure 7 and Figure 8), based on which optimization can be achieved for other
application of microfludic valves.  
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