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ABSTRACT

In this paper a universal constitutive equation with internal damping for

materials under cyclic and dynamic loading is presented using fully coupled

thermal-structural finite element analysis. The equation adapts the idea of a

spring dashpot system connected in parallel for continuum utilizing

appropriate deformation measures, which are independent of rigid body

motion, thus enabling more precise numerical simulation of real material. In

this work, mathematical formulation of the problem is presented and

demonstrated in numerical examples using a solid bar in cyclic tension and

a cross-shaped specimen in biaxial tension. Elastic and plastic loading

cases with and without heat generation rate per unit volume were studied,

where the heat generation rate was defined as 80% of the dissipated

energy per unit time. Although the calculation results are in good

agreement with the only experiment we could find in technical literature,

more detailed tests are needed to draw final conclusions.

1. INTRODUCTION
Dissipative processes that take place in material outside thermal equilibrium play an
important role in deformable body behaviour. One such dissipative process is an internal
damping which can essentially affect the construction behaviour. Contemporary theories
don’t pay too much attention to the problem and the induced thermo-mechanical processes
are not sufficiently understood. In the presented paper, a universal constitutive equation with
internal damping is presented. The model adapts the idea of a spring-dashpot system
connected in parallel for continuum utilizing appropriate deformation measures, which are
independent of rigid body motion, thus enabling more precise numerical simulation.

2. THEORY BACKGROUND
In the presented work we assume that the deformations of a solid body, idealized as non-
polar continuum [1], [2], are infinitesimal. In the energy conservation equation derivation we
keep strictly to basic principles of thermodynamics [3], [4] and work with known and
experimentally verified physical quantities. We neither strive for completeness nor try to
include any dissipative process into the analysis [5]–[8], which may take place in the
material, but its mathematical formulation has not been yet clarified or verified
experimentally.
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2.1. THE GOVERNING EQUATIONS OF THE BODY
The local form of conservation of energy of a closed thermodynamic system; a solid
deformable body is given in the following form [9]:

(1)

Here σ, d, q, b, v, e, r, ρ respectively denote the Cauchy stress tensor, the strain rate
tensor, the heat flux vector, the body force vector, the velocity vector, the internal energy per
unit volume, the heat generation rate per unit volume and the material density at a material
point of the body. From the physical point of view, the first part of Eqn (1) represents the
power of mechanical forces, which is also known as the local form of the conservation of
mechanical energy

(2)

and the second part is a heat equation, which represents the local form of the conservation of
heat energy. In contemporary literature [5], [6], [8], [10] the heat equation is often incorrectly
denoted as the local form of the conservation of energy and its final form, suitable for
calculation, is derived from assumed energy functionals, in which local state axioms and
thermodynamic constraints coming from the second law of thermodynamics [5], [6] are
applied. Such a heat equation will work properly if and only if all assumptions in its
derivation are correct. Instead of using the aforementioned procedure in our study a simpler
heat equation is employed

(3)

in which c and T respectively stand for the specific heat capacity and the temperature.
Moreover, we may say that the equation is complete and applicable for both, elastic and
plastic loading, if we reinterpret the meaning of its last term in the sense that any heat,
generated during the deformation of the body, can be viewed as a heat generation rate per
unit volume. After substituting Eqns (2) and (3) into Eqn (1) the final form of the
conservation of energy will be recovered, which in harmony with Eqn (3) will imply that
ė = ρcṪ + σ:d. The same formula could be found more easily by simply applying the
definition of the first principle of thermodynamics, i.e. balancing the energy fluxes, over the
body using known physical quantities only.

From the conventional solution point of view of a system of partial differential equation
(PDE) [11], any of Eqns (1) or (3) supplemented with the Euler-Cauchy equation of motion

(4)

form an equivalent system of PDE, the solution of which is identical and as a result Eqn (1)
can be replaced with Eqn (3). The same, however, does not apply in the case of the weak
solution [11], [12], as the energy functionals created from any of the aforementioned system
will result in different solution at their extremes, which we will discuss later.

In order to solve the governing equations of the body, Eqns (3) and (4) are supplemented
with constitutive equations and boundary conditions (BC). We are particularly interested in
the case where the boundary conditions take the form

BC: (5)

(6)σσ • =n t.

− = = −( )•q n q h T Tn BULK S ,

ρ &v b 0− ∇ − = =• σσ σσ σσ, ,         T

& &e r cT r− − ∇ + = + ∇ − =• •( : ) ,σσ d q qρ 0

v v b v v : d v b v• • • • • •− ∇ = + − ∇ − =( – ) ( ) ,ρ ρ& &σσ σσ σσ 0

v v b d q• • •− − ∇ + − − ∇ + =( ( : ) .ρ σ & &e rσ 0)
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Here n, t, h, Ts , TBULK respectively denote the outward surface normal vector, the surface
traction vector, the heat transfer coefficient, the surface temperature and the bulk
temperature. If heat convection takes place, i.e. Eqn (5) applies, the heat equation cannot be
solved alone using the conventional solution, regardless of the definition of the heat
generation rate per unit volume. In this case, the temperature field and the deformation field
of the body are coupled via Eqn (6), into which additional constraints have to be introduced,
to get a solution.

Since Eqns (5) and (6) are not solved directly during the weak solution, only their left-
hand sides are replaced with their right-hand sides in the energy functional appropriate term
integration [11], [12], in the weak solution Eqn (1) cannot be replaced with Eqn (3), as in the
functional the conservation of mechanical energy ensures the two-way coupling represented
by the second BC. The governing equations of the body then take the following variational
forms [13], [14]

(7)

(8)

where (9)

Here K, fi,vi,Qi denote the conductivity tensor, the nodal force vector, the nodal velocity
vector and the nodal heat flux at i = 1,2,...,NNode nodes.

2.2. CONSTITUTIVE EQUATION WITH INTERNAL DAMPING
Considering the analogy between continuum and a spring dashpot system connected in
parallel, where the spring force/damping force depends on the relative displacement/relative
velocity of the spring ends, the Cauchy stress tensor of a material with internal damping can
be expressed in the following incremental form [15]

(10)

where
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In Eqns (10)–(14) the left superscripts denote the physical quantity value

at discrete times, corresponding to the previous, mid and current configuration of the body.
We assume that the material is isotropic and the strain rate tensor has the additive
decomposition d = del + dpl + dth into an elastic part del, a plastic part dpl and a thermal part
dth = α Ṫ I. Here α is the coefficient of thermal expansion, Ṫ the temperature change per unit
time and I is a unit second-order tensors. Eqns (10)–(14) are supplemented with the
following constitutive and evolution equations

(15)

(16)

(17)

(18)

(19)

Eqn (11) defines the elastic part of the Cauchy stress tensor, where the elastic stress
increment ∆σ el is given either with Eqn (12) in elastic loading/unloading or with Eqn (13) in
plastic loading. Here C, ∆t denote the fourth-order elastic material tensor and the time step
size. Eqn (14) defines the damping part of the Cauchy stress tensor. Eqns (15)–(19) formulate
the yield surface and the evolution equations of the extended NoIHKH material model [16],
[17] using associative plasticity. The NoIH rule [18] for isotropic hardening and the NoKH
rule [18] for kinematic hardening are given with Eqns (17)–(18). Here ∑, X, εpl, ε̇pl

respectively are the deviatoric component of the stress tensor, the back stress tensor, the
accumulated plastic strain and the accumulated plastic strain rate. The remaining symbols
denote constant material parameters. The fourth-order cyclic material tensor and the 
damping tensor are formally constructed in the same way as the elastic material tensor
using two independent variables vcycl, Ecycl and vdamp, Edamp, which ensures isotropy

(20)

for i = cycl, damp, where is a unit fourth-order tensors.

2.3. DISSIPATION INDUCED HEATING
During deformation certain amount of the supplied mechanical energy dissipates into heat.
To determine the exact portion of the dissipated energy that changes into heat represents a
difficult experimental task [19], [20]. In this paper, we assume that this figure is around 80%
and then we define the heat generation rate per unit volume as follows

(21)

Here the first term on the right-hand side denotes the plastic heating and the second term
stands for the internal damping induced heating.
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3. NUMERICAL EXAMPLES
3.1. EXAMPLE NO. 1 – CYCLIC TENSION OF A STEEL BAR
In the first numerical experiment a solid bar, size 1m × 1m × 3m, was studied applying cyclic
tension. One end of the bar was fixed and the second end underwent a prescribed axial
deformation determined by a sine function and amplitude 2.5/3.5 mm corresponding to
elastic/plastic loading case, while it was guided in the remaining two directions. The velocity
and the acceleration of the bar end were defined as the first and second derivatives of the
prescribed axial deformation. In the numerical experiment one loading cycle was realized using
15 degree angular increments in each time step. Cases with and without internal damping and
with and without heat generation rate per unit volume were studied, using 0.04 Hz, 4.16 Hz and
41.66 Hz loading frequency corresponding to 1.0s, 0.01s and 0.001s time step values. The
analyses were run as transient-dynamic ones considering heat convection through all
surfaces and zero bulk temperature. The bar was initially at rest with zero initial temperature.
The initial velocity of the body changed linearly in axial direction from zero at the fixed end
to the maximum at the moving end of the bar to prevent initial oscillations in the run-up
stage. Then we can say that in the numerical simulation a stabilized cycle was modelled
without the initial transition stage that would vanish after few cycles due to internal damping.
In the numerical experiment all material parameters were constant and, moreover, some of
them have to be considered informative as their values were not determined experimentally.
Table 1 shows the used material properties.

Figure 1 shows the temperature distribution in one longitudinal section of the bar at
maximum tension corresponding to the plastic loading case using 41.66 Hz loading
frequency, and the dissipated energy induced heating defined with Eqn (21). Figures 2-3
show the axial deformation versus axial stress curves at selected nodes, at the bar moving
end N30 and in its middle part at node N149 (See Figure 1 for the location of the nodes). As
can be seen in figure 2, there is no energy dissipation in elastic loading without damping, the
system is conservative and the axial deflection versus axial stress curve is linear. Applying
internal damping hysteresis loops were created and the material curve is no longer linear.
Figures 2 and 3 imply that the area of the hysteresis loop is proportional to the deformation
rate, i.e. the higher the deformation rate the greater the loop area as well as the amount of the
dissipated energy. Also, in limiting state, as the deformation rate approaches zero, the effect
of the internal damping vanishes.

Figures 4-5 depict the temperature time history at nodes N30, N149 in term of
dimensionless time, defined as the ratio of the current time and the analysis end time. In the
figures 25 multiply of the accumulated plastic strain time history is also depicted at node 149.
There are great differences in temperature time history curves, depending on if elastic/plastic
deformation takes place. In elastic loading the temperature change frequency is twice of the
mechanical loading frequency. Figure 4 implies that there is a significant temperature rise at
node N30, when the bar undergoes plastic deformation, although no plastic deformation has
taken place at node N30.

3.2. EXAMPLE NO. 2 – CROSS SHAPED SPECIMEN IN BIAXIAL TENSION
In the second numerical experiment a cross shaped specimen under biaxial tension was
studied. Figure 6 depicts the specimen geometry, the body of which contains 60 mm long and
0.2 mm wide axial cuts, to homogenize the stress field at its centre. In the numerical study
only 1/8 of the specimen was modelled employing 3 planes of symmetry, while the fillets and
the axial cuts were neglected. The body was loaded gradually applying constant axial
velocity v = 0.15 mm/s and zero acceleration at its four ends. The maximum prescribed
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Table 1 Material properties of the bar

E[Pa] Ecycl[Pa] Edamp[Pa·s] v = vcycl = vdamp[-] σy [Pa]

2.1·1011 2.1·105 0.0 / 2.1·108 0.3 200.0·106

Q[Pa] b[-] γ∞ [-] γ0 [-] ω [-]
50.0·106 3.0 20.0 10.0 10.0

ρ[kg/m3] c[J/kg·K] kxx = kyy = kzz[W/m·K] αx = αy = αz[K
–1] h [W/m2·K]

7800.00 500.00 45.00 0.0000126 50.00

Figure 1 Temperature distribution in one longitudinal section of the bar at maximum
tension.
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deformation of the specimen end, 0.6mm, was achieved in 4 seconds using 26 time steps.
Heat convection through all surfaces was considered, applying zero bulk/environmental
temperature. The body was initially at rest with zero initial temperature. The analyses were
run as transient-dynamic ones applying 0.154s time step size. In the numerical study constant
material properties of pure aluminum and the Von-Mises material model were used, where
the later is a special case of the extended NoIHKH material model without kinematic
hardening. Table 2 outlines the material properties of the specimen.

Figure 7 shows the temperature time history at the centre of the cross-shaped specimen.
In the first analysis only plastic heating was considered as a result of neglecting the material
damping, while in the second analysis 80% of all dissipated mechanical energy contributed
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to the heating. Similar temperature profile can be seen in an only available experiment
carried out on an AlMgSu1 cross-shaped specimen [21]. Figure 7 implies that the internal
damping induced heating is probably overestimated, while the plastic heating seems to be
more realistic. In spite of the fact that we don’t know many details of the experiment, such
as the material properties of the specimen or its exact dimensions, applied loading rates etc.,
the achieved results are very positive.

Figure 2 Hysteresis loops at selected nodes coming from the elastic loading case.
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Figure 3 Hysteresis loops at selected nodes coming from the plastic loading case.
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4. CONCLUSION
In this paper a universal constitutive equation with internal damping was presented using
fully coupled thermal structural finite element analysis. A solid bar in cyclic tension and a
cross-shaped specimen in biaxial tension were studied. The analyses were capable to
reproduce the temperature profile at the centre of a cross shaped specimen in harmony with
the only available experiment. The achieved results are very positive; however they cannot
be considered to be conclusive, as many details of the experiment have not been known.
More detailed tests will be needed to draw final conclusions.

Figure 4 Temperature time history at node N30 using 44.61 Hz loading frequency.
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Figure 5 Temperature time history at node N149 using 44.61 Hz loading frequency.

−0,01

0,04

0,09

0,14

0,19

0 0,2 0,4 0,6 0,8 1
Dimensionless time [ - ]

T
em

pe
ra

tu
re

 [ 
C

 ]

N149_NoHSPL
N149_NoHSEL
N149_HSPL
N149_HSEL
N149_EqPlsStr * 25

Temperature time history at node N149

NoHSPL — No heat generation rate per unit volume and plastic loading case
NoHSEL — No heat generation rate per unit volume and elastic loading case

HSPL — Heat generation rate per unit volume and plastic loading case
HSEL — Heat generation rate per unit volume and elastic loading case
EqPlsStr * 25 — 25 times the actual accumulated plastic strain value 



Int. Jnl. of Multiphysics Volume 3 · Number 2 · 2009 163

Figure 6 Specimen geometry.
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Table 2 Material properties of the cross shaped specimen

E[Pa] Ecycl[Pa] Edamp[Pa·s] v = vcycl = vdamp[-] σy [Pa]

68.0·109 0.0 0.0/68.0·107 0.36 150.0·106

Q [Pa] b [-] γ∞ [-] γ0 [-] ω [-]
50.0·106 3.0 0.0 0.0 10.0

ρ[kg/m3] c[J/kg·K] kxx = kyy = kzz[W/m·K] αx = αy = αz = α [K–1] h [W/m2·K]

2699.00 900.00 210.00 0.000024 50.00

Figure 7 Temperature time history at the centre of the specimen
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Figure 8 Temperature time history in terms of strain at the centre of a cross-
shaped specimen after Franke H [21]
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