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ABSTRACT

The present paper is concerned with the numerical simulation of Magneto-

Hydro-Dynamic (MHD) problems with industrial tools. MHD has received

attention some twenty to thirty years ago as a possible alternative in

propulsion applications; MHD propelled ships have even been designed for

that purpose. However, such propulsion systems have been proved of low

efficiency and fundamental researches in the area have progressively

received much less attention over the past decades. Numerical simulation

of MHD problem could however provide interesting solutions in the field of

turbulent flow control. The development of recent efficient numerical

techniques for multi-physic applications provide promising tool for the

engineer for that purpose. In the present paper, some elementary test

cases in laminar flow with magnetic forcing terms are analysed; equations

of the coupled problem are exposed, analytical solutions are derived in

each case and are compared to numerical solutions obtained with a

numerical tool for multi-physic applications. The present work can be seen

as a validation of numerical tools (based on the finite element method) for

academic as well as industrial application purposes.

Keywords: Finite element method, multi-physic simulation; magneto-

hydro-dynamic.

1. INTRODUCTION
Magneto-Hydro-Dynamic (MHD) effects have received attention some twenty to thirty years
ago as a possible alternative in propulsion applications; MHD propelled ships have even
been designed for that purpose: the most famous example is the Japanese ship Yamamoto 1,
which has been designed and build as prototype of MHD-propelled ship (see Fig. 1 featuring
a photo of the MHD thrusters of Yamamoto 1). However such propulsion systems have been
proved of low efficiency and fundamental researches in the area have progressively received
much less attention over the past decades.
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Numerical simulation of MHD problem could however provide interesting solutions in
the field of turbulent flow control. The development of recent efficient numerical techniques
for multi-physic applications provide promising tool to the engineer for that purpose. In the
present paper, elementary test cases involving various MHD effects are studied: the general
equations of MHD coupled problems are first recalled (section 2); then, analytical test-cases
in laminar flow with magnetic forcing terms are analysed, namely the “Hartman problem”
(section 3), the “Couette problem” (section 4) and the “Rayleigh problem” (section 5). An
analytical solution is derived in each case and serves as a reference for comparison with a
numerical solution obtained from a numerical tool for multi-physic applications.

2. MDH PROBLEM: GENERAL FORMULATION 
AND NUMERICAL RESOLUTION
2.1. OVERVIEW OF THE MHD EQUATIONS
A general description of a MHD problem is derived from the following set of fundamental
equations [1,2]. Let v be the velocity of the fluid flow, whose physical characteristics are
denoted ρ (density), η (viscosity), and σ and λ (electrical and thermal conductivity). Let j be
the current density field and E and B the electric and magnetic fields; let ε be the electric
charge density, e the energy per unit mass of the fluid and r the volumic source of heat. Dr
and Br respectively stand for the remanent displacement and the remanent magnetic flux
density. The ground equations for a general MHD problem are written as follows:

• Ohm equation:

(1)

• Navier Stokes equation:

(2)
∂
∂
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Figure 1 A MHD thruster from the experimental Japanese ship Yamato 1 at the
Ship Science Museum in Tokyo.



• Maxwell equations:

(3)

(4)

(5)

(6)

The equation of momentum for the fluid reads:

(7)

when the advective terms have been discarded, and the equation of energy for the fluid is
written as:

(8)

with viscous and ohmic dissipation, assuming that density, viscosity, electrical and thermal
conductivity of the fluid are not temperature-dependant.

2.2. NUMERICAL TECHNIQUE FOR MULTI-PHYSIC PROBLEMS
It is obviously not possible to derive an analytical solution of the above formulated system
of equations, except in some particular configurations, some of which are studied in the
present paper.

Numerical simulation is therefore of practical use in such complex multi-physic
configuration; among a large variety of numerical tools available to the engineer for
industrial applications, COMSOL-Multiphysics is one of the most popular and powerful tool
which can be employed to tackle multi-physic problems, see Fig. 2. It is a finite element
method-based code, which allows for multi-physic simulations, using a set a elementary
solvers, which can be coupled in various ways. Solving the above equations with a finite
element method requires the discretisation of a weak formulation of the problem. In the
present context of MHD equations, the basic discretisation principles are as follows. Given
that the fluid is incompressible, Eq. (2) can be written as:

(9)

while the equation of the motion can be reformulated as:

(10)
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Taking the state equation of an incompressible fluid e = CvT (with Cv being the specific
heat at constant volume), which is also the state equation of an ideal gas Eq. (8) can be
written as:

(11)

In order to solve the partial differential system of Maxwell equations, these equations
are gathered into two equations. One can notice that if there is an extern magnetic field
Bo, which is the case in this study, this field is considered as a remanent magnetic flux
density.

From the Faraday law, it is possible to derive an electric scalar potential V defined by
[1,2,3]:

(12)

From the Gauss law, it is possible to derive a magnetic vector potential A defined by
[1,2,3]:

(13)

Subsequently, it is possible to formulate the problem only in terms of potentials V and A.
Equations (4) and (1) can be indeed written as:
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Figure 2 Implementation of the MHD equations in the COMSOL-Multiphysic
numerical tool.



(14)

Taking into account the divergence of Eq. (4), and substituting in Eq. (1) yields:

(15)

In the present study, the electromagnetic problem is solved using the two preceding
equations for a stationary two-dimensional problem in assuming that Dr = 0. With the
previous weak formulation of equations, in meshing the space, the problem can be solved in
solving the non-linear system of equations, from the discretization on the nodes, to minimize
residuals of a finite elements method. The whole process is carried out with the COMSOL-
Multiphysic numerical tool, using the appropriate modules.

Validation of the multi-physic numerical method being the key-issue of the procedure, the
present paper focuses on comparison between numerical calculations and analytical
solutions which are derived for elementary test cases. From the technical point of view,
further information on the COMSOL-Multiphysic numerical tool can be found in a first
approach by browsing on the website www.comsol.fr and related publications; from the
scientific point of view, some ground consideration on coupling techniques for MHD
simulations can be found in reference [4].

3. HARTMANN PROBLEM
The first elementary test case considered in the present investigation is the so-called
“Hartmann problem”, represented in see Fig. 3 bellow. It is reminded that the problem to be
considered is the steady flow of an incompressible electrically conducting fluid in the
positive x direction, with an extern magnetic field Bo, assumed to be uniform and constant,
in the positive z direction. Assuming an electrical conductivity infinite for the electrodes, end
effects (L>>a), secondary flows (b>>a) and the Hall effect can safely be neglected.

Except for the pressure p and the temperature T, previous assumptions lead to variables
functions of alone, which are thus expresses as v = (ux, 0, 0), j = (0, jy, 0), B = (bx, 0, Bo), E
= (0, Eo, 0), where Eo and Bo are constants.
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Figure 3 Definition of the MHD “Hartmann problem”.



These legitimate hypotheses allow obtaining analytical solution and simplifying the
numerical simulation. In the first three cases studied in this paper, the flow can be solved in
two dimensions. However, at first sight, this problem has to be similar to the theoretical one,
and therefore, a normal current, whose profile is unknown, has to be set: the profile is solved
in the direction of the magnetic field.

After analysis of the equations above, in the first three particular cases studied, the
equations are found to be invariant by permutation of the electrical end magnetic field. Then,
a normal uniform magnetic field is used in the numerical simulation, and the flow is solved
in the direction of the unknown current. It should nonetheless be noticed that this assumption
is not true in general, for instance in problems involving a finite-length duct.

3.1. ANALYTICAL SOLUTION FOR THE HARTMANN PROBLEM
Since the heat-transfer and fluid motion equations are uncoupled for an incompressible fluid,
it is possible to solve the corresponding equations in a separate manner. Moreover, since the
equations are linear the solution for the velocity profile ux and the mean velocity is found
to be [1]:

(16)

(17)

with boundary condition ux(±a) = 0. In the preceding expression, the non-dimensional ratios

Z and H are defined as and ; the latter is the so-called Hartmann

number. ch(•) and sh(•) stand for hyperbolic cosine and sine, respectively. Figure 3 plots
some typical velocity profile within the duct in the Hartmann problem, for various H; it is
stressed that the case H = 0 corresponds to the situation where magnetic forcing is absent.

It is interesting to bear in mind that a number of experimental investigations have

provided excellent agreement with the previous solution (see for instance [2]). Letting

be the load factor of the flow and J the net current flowing through the circuit per unit area,
it is possible to deduce the reduced and the net density J of currents:

, 
(18)

The electric field Eo generated by a tension Ω, is obtained here with Eq. (6) in the case

of a parallel-wall channel . The reduced induced magnetic field is derived from

Eq. (4):
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where, as a consequence of symmetry of the problem, the boundary condition for bx is
assumed to be bx = 0.

The magnetic Reynolds number Rm is defined here as , where 

is the magnetic diffusivity. Taking the state equation of an incompressible fluid e = CvT (with
Cv being the specific heat at constant volume), which is also the state equation of an ideal 

gas (second Joule’s law), Eq. (8) can be written as , hence the
equation for temperature:

(20)

with the reduced temperature (which can be seen as the ratio between the

thermal energy of the fluid and its kinetic energy), Prandtl number of the fluid ,

and the reduced source of heat .

The boundary condition for T is assuming to be T(±a) = Tw, so that the analytical solution
of Eq. (20) is:
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Figure 4 Analytical velocity distribution for the Hartman problem (with Kxu=100).



where constants C1 and C2 are given by and C2 = H(K–1)ch(H)–

Ksh(H). The temperature profile according to Eq. (21) is represented by Fig. 5 for various
values of the Harman number H.

According to [11], it is also of interest to note that if the heat flux qw at the wall is
independent of x and the problem is assumed to be one-dimensional, then T must be a linear
function of x:

(22)

with the boundary condition expressed as .

Substituting Eq. (22) in Eq. (20) yields g(z) and θ, hence .

It can be inferred that if , then k = 0 and the previous problem

solution is recovered since in this case, all the heat generated by viscous and Joule dissipation
is transferred out of the channel. When qw is not constant or with a non-linear variation of T
along the channel wall, the problem become two-dimensional and rise many more
difficulties [9].
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When the thermal conductivity is a function of T, the previous equation of energy (8) has
to be modified in (23):

(23)

The thermal conductivity of the fluid is assuming here to be a linear function of T:

(24)

Then, with e = CvT and the previous boundary condition for T, (23) can be solved with
the Hartmann velocity profiles founded upper:

(25)

where is the Prandtl number at order 0 in , and , which

allows to recover the previous solution, with a constant λ, at order 0 in ε1, and then to obtain 

the gap between the two solutions at order 1 in ε1, hence .

3.2. NUMERICAL SIMULATION FOR THE HARTMANN PROBLEM:
RESULTS AND VALIDATION
The CFD problem can be solved in two dimensions, which has been performed within the
COMSOL-Multiphysic environment: a two-dimensional duct with a length of 15 m to
minimize end effects and a wide of 10 cm to avoid apparition of secondary flows is
considered for that purpose. This duct is meshed with 5124 triangular finite elements.
Boundary conditions are a uniform and constant pressure at inlet and outlet, a constant and
uniform magnetic field Bo = 1 mT normal to the plane of the flow, a tension of Ω = 10 mV
between the two electrodes, a null wall temperature, and a conductor fluid.

The fluid has the following physical-chemical parameters: ρ = 998 kg/m3, η = 10–3 Pa.s
λ = 5 W/m/K, Cv = 100 J/kg, σ = 10 S/m. Accordingly, the Reynolds number for the fluid
flow is Re = 42, which allows to solve the Navier-Stokes equations without taking turbulent
effects into account. The magnetic Reynolds number is equal to Rm = 8 • 10–10, which
indicates that the feedback of the fluid motion on the magnetic field is limited. The Hartmann
number is H = 5 • 10–3 which means the MHD aspect of the flow is not strong, and the load
factor K = 1,2 • 105 indicates that the duct is working as a pump. One can notice that with a
purely hydrodynamic problem, there will be no flow through the duct.

The CFD simulation is compared to a classical analytical solutions described in [1], on
Figs. 6 and 7. The results show an excellent agreement between the CFD profiles and the
analytical solutions, both in terms of velocity profiles and temperature distribution, which
yields the validation of the numerical procedure for this elementary test case.
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4. COUETTE PROBLEM
The second elementary test case considered in the present investigation is the so-called
“Couette problem”, represented in Fig. 8 below. In such problem; the lower wall at z = 0
remains stationary, while the upper wall at z = L is moving with a constant velocity u(L) = uw.
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The “Couette problem” problem is therefore more general than the “Hartman problem”
considered in the previous section; the latter can be viewed as a particular car of the former
with uw = 0.

Since this problem is quite similar to the previous one, the same hypothesis hold, namely
v = (ux, 0, 0), j = (0, jy, 0), B = (bx, 0, Bo), E = (0, Eo, 0), where Eo and Bo are constants.

4.1. ANALYTICAL SOLUTION FOR THE COUETTE PROBLEM
As in the previous section, the heat-transfer and the fluid motion equations are uncoupled,
and it is possible to solve equations separately. Moreover the equations are linear and,
following e.g. [3], the solution for u is found to be:

(26)

(27)

with boundary conditions u(0) = 0, and u(L) = uw.The non-dimensional numbers

appearing in Eqs. (26) and (27) are defined as follows: , and .

Figure 9 plots some typical velocity profile within the duct in the Couette problem, for
various H; it is stressed that the case H = 0 corresponds to the situation where magnetic
forcing is absent.
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(30)

with boundary condition bx(L) = 0. Letting e = CvT, the boundary condition for T is assumed
to be: T(0) = Tw and T(L) = Tw. As a consequence, using the reduced temperature

, the solution of (8) is:

(31)

where and .

The temperature profile according to Eq. (31) is represented by Fig. 10 for various values
of the Harman number H.

It is also interesting to know that an analytical solution for the temperature distribution of
a Couette flow has also been found when λ is a linear function of T, but the solution has too
many terms to be reproduced here.
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4.2. NUMERICAL SIMULATION FOR THE COUETTE PROBLEM: RESULTS
AND VALIDATION
In the same manner as for the Hartman problem, a CFD procedure can be used to solve the
problem in two dimensions; a two-dimensional duct with a length of 17 m to minimize end
effects and a wide of 10 cm to avoid apparition of secondary flows, is considered. This duct
is meshed with 9722 triangular finite elements. The boundary conditions are a uniform and
constant pressure inlet and outlet, a velocity of uw = 0,01 mm/s for the upper wall, a constant
and uniform magnetic field Bo = 0.1 mT, a tension of Ω = 0.2 mV between the two electrodes,
a wall temperature null, and a conductor fluid. The fluid has the following physical-chemical
parameters: ρ = 998 kg/m3, η = 10–3 Pa.s, λ = 0.6 W/m/K , Cv = 4187 J/kg, σ = 10 S/m.

Accordingly, the Reynolds number of the fluid flow is Re = 1, which allows to solve the
Navier-Stokes equations without a turbulent model. The magnetic Reynolds number is equal
to Rm = 10–11, so that the feedback of the fluid motion on the magnetic field is rather weak.
The Hartmann number is H = 1 • 10–3, which indicates that the MHD aspect of the flow is
not strong; and the load factor K = 2 • 106 indicates that the duct is working as a pump. One
can notice that with a purely hydrodynamic problem, there will be no flow through the duct.

The results of the CFD simulation is compared to classical analytical solutions described
in [1]. Figure 11 shows that the agreement for the velocity profile is good on all the wide of
the duct. It can also be noticed that the MHD aspect is clearly visible through the non-linear
shape of the profile. As far as the temperature distribution is concerned, it can be concluded
that the end effects are stronger than those of velocity; accordingly, the temperature is slightly
over-estimated by the numerical simulation, as we can be inferred from Fig. 11. Additional
numerical tests are carried out in the framework of the present study, but not reported in the
paper for the shake of brevity; they evidences that it is possible to improve the temperature
estimation using a larger computational domain, as could be expected a priori.
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5. RAYLEIGH PROBLEM
The third elementary test case considered in the present investigation is the so-called
“Rayleigh problem”, represented in Fig. 13 bellow. Such configuration corresponds to a
transient problem in which a magnetic field, assumed uniform in space and constant in time,
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is applied normal to the surface of an impulsively moved half plane. This problem is of
particular interest because an analytical solution can be obtained in closed form, so that the
nature of Magneto-Hydro-Dynamic boundary-layer can be investigated. Moreover, this
problem is a complementary test case which allows considering transient flow configurations.

5.1. ANALYTICAL SOLUTION FOR THE RAYLEIGH PROBLEM
Because of the transient nature of the problem, it is convenient to solve the problem with the
so-called “induction equation”, which reads:

(33)

and which is obtained directly from the Maxwell and Ohm equations. Governing equations
of the problem are (7) and (33), which are reformulated in the case of Fig. 13:

(34)

(35)

Following [3], initial values and boundaries conditions are as follows: u(y,0) = 0, bx(y,0) = 0,
u(0,t) = uo, bx(0,t) = 0 with u and bx being bounded when .

As in the previous section, the heat-transfer and fluid motion equations are uncoupled and
it is possible to solve equations separately. However, equations (34) and (35) show that the
velocity and the induced magnetic field are solutions of a partial differential system of two
coupled equations. A general expression of the shear stress on the wall can be obtained, see
for instance [3]:

(36)

where .

It is also possible to derive a general solution for the steady motion because in this case,
(34) and (35) can be written as:
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(37)

(38)

The latter which can be solved:

(39)

(40)

where is a characteristic length of the problem.

However, no general solution can be found for the Rayleigh problem, and hypotheses
have to be made to go further. Various approximations can be made, see for instance
references [6] and [7]; in the present case, it is assumed that . Using this
hypothesis, and following [3], it is possible to derive and analytical expression for the
velocity field in the frequency domain with the aid of the Laplace transform; turning back
into the temporal domain, the solution reads:

(41)
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Figure 14 Velocity profiles in the Rayleigh problem.



Figure 14 plots some typical velocity profile within the duct in the Rayleigh problem, for

various values of ; it is stressed that the case corresponds to the situation

where magnetic forcing is absent.
Taking into account magnetic effects has direct influence on the numerical simulation,

since it is observed that the computational effort increases together with the magnetic field
intensity. The asymptotic expression of Eq. (41) allows recovering the classical solution of
this problem:

(42)
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Figure 15 Visualisation of the flow for the Rayleigh problem.
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The study of the temperature distribution is a boundary layer problem, which is quite
difficult to solve analytically; it has however been already discussed by several authors, see
for instance reference [ ]. As it is far beyond the purpose of the present work, it will therefore
not be considered here in details.

5.2. NUMERICAL SIMULATION FOR THE RAYLEIGH PROBLEM: RESULTS
AND VALIDATION
CFD calculations are performed in the same manner as for the Hartman and Couette
problems, using the COMSOL-Multiphysic software. In the present simulations, the velocity
of the wall is set to uw = 0.01 mm/s, while all other parameters are the same as those used
for the Couette problem.

As in the former cases, the results of the CFD simulation are compared to classical
analytical solutions, as described in [1]. Figure 15 evidences the link between the fluid flow
and a boundary layer, while a comparison between the analytical solution and the numerical
solution is proposed on Fig. 16. The latter shows a good agreement between the analytical
and numerical solutions, even after for long times, which allows validating the numerical
tool and procedures for further engineering applications.

6. CONCLUSION
In the present paper, three different test cases for Magneto-Hydro-Dynamic problems have
been investigated, both from the analytical and numerical standpoints. The so-called
“Hartmann problem”, “Couette problem” and “Rayleigh problem” serve as validation test
case in MHD configuration.

Analytical solution for the fluid velocity profile as well as for the temperature profile have
firstly been derived for each problem; numerical simulations have secondly performed using
an engineering numerical tool for multi-physic applications, namely the COMSOL-
Multiphysic code; comparisons between analytical and numerical solutions have thirdly been
performed.

The present work serves as starting point for further studies which will be performed with
the COMSOL-Multiphysic code for industrial-oriented problems. It can also be viewed as a
reference work for validation of coupled numerical procedures for academic studies.

NOMENCLATURE
t = time
V = velocity vector
u = horizontal velocity
? = average horizontal velocity
E = electric field vector
B = magnetic field vector
j = current density
J = net current through the circuit per unit area
Z = non-dimensional height
U = non-dimensional velocity
T = absolute temperature
p = pressure in the fluid
ρ = density of the fluid
σ = electrical conductivity of the fluid
µ = absolute magnetic permeability
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ε = absolute magnetic permittivity
λ = thermal conductivity of the fluid
Cv = specific heat at constant volume
η = Dynamic viscosity of the fluid (Pa s in SI)
ν = kinematical viscosity of the fluid
Dr = remanent displacement
Br = remanent magnetic flux density
ρe = electric charge density
V = electric potential
Ω = electric tension (electric potential gap between the two electrodes)
e = energy per unit mass of the fluid and 
r  = volumic source of heat
Re = reynolds number 
Rm = magnetic Reynolds number 
Dmag = magnetic diffusivity
H = Hartmann number
K = load factor
Pr = Prandtl number
θ = reduced temperature
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