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ABSTRACT

The present paper is Part 2 of a two parts paper on flow around vibrating

wind turbine airfoils. The first part of the paper dealt with a forced oscillating

airfoil. Part 2 focuses on free vibrating airfoils. The flow induced vibrations

on two airfoils used for wind turbine blades are investigated by applying a

fluid structure interaction approach. A commercial Computational Fluid

Dynamics (CFD) code is coupled to a computational structural program

that solves the dynamic equations of the airfoil oscillations. The fluid

governing equations are described in the Arbitrary Lagrangian Eulerian

coordinates and solved with a moving mesh. A straightforward meshing

technique is implemented in a subroutine called by the CFD code at each

time step for updating the grid. The method is applied to a free pitch

oscillating airfoil and to combined pitch and vertical oscillations known as

the flutter instability.

Keywords: ALE formulation, moving mesh, fluid – structure – interaction,

unsteady aerodynamics

1. INTRODUCTION
Wind turbines aeroelastic stability problems begun to appear since 1990 with the
development of larger blades. Most aeroelastic stability analyses devoted to wind turbines
were performed using traditional aeroelastic design tools where the aeroelastic codes contain
an aerodynamic part and a structural part: (i) the blade force and torque being first computed
for given parameters (wind speed, rotational velocity …) with engineering-type dynamic
stall models, where more often, semi-empirical models initially developed for helicopter
rotor blades have been modified and adapted for airfoil sections used on wind turbines [1]
and then (ii) the dynamic rotor equations being solved to describe the response of the wind
turbine [2, 3]. However, with the progress of computational facilities, improved analysis of
the mechanical behaviour of a rotating wind turbine is now possible by a Fluid Structure
Interaction (FSI) approach. In these techniques, the aerodynamic forces are computed from
the solution of the time-accurate Navier-Stokes equations. The calculated forces are then
used for the solution of the rotor dynamic equations to determine the response of the
structure at each time step. FSI techniques have been widely used in many industrial
problems [4, 5] and for aerospace applications where most papers are applied to
compressible flows [6–8]. Also, it was shown that compressibility effect plays significant
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role in aeroelastic stability limits. As wind turbines operate in an incompressible
environment, specific studies have to be performed for wind turbine blades. To the author’s
knowledge, the main contribution with an FSI approach applied to wind turbine blades was
made under the European project KnowBlade where Ellipsys3D, an in house computational
Fluid Dynamics (CFD) code, and a structural code were used to simulate flap-lead/lag
vibrations of a wind turbine blade [9]. Recently, Svacek et al [10] presented the study of the
classical Flutter by a FSI approach where the incompressible fluid equations were solved by
the finite element method, using an ALE formulation of the Navier Stokes equations.

In this study, flow induced vibrations on airfoils are simulated with FSI computations
using a commercial CFD code based on the finite volume method. In part one of this paper
was implemented a straightforward technique for moving the mesh with a user subroutine.
Then, time-accurate computations of the airfoil forces and torque based on the solution of the
Navier Stokes equations expressed in ALE were applied to a forced oscillating airfoil. In this
second part of the paper, the case of a free vibrating airfoil is considered. The aerodynamic
forces, solution of the Navier-Stokes equations, are used to determine the response of the
structure with the solution at each time step, of the airfoil dynamic equations. The coupling
method of the CFD code with dynamic equations by this FSI approach is presented in the
next section. Then the method is applied to a NACA 0012 airfoil in free pitch oscillations.
Thereafter, the issue of the classical Flutter or combined pitch and vertical oscillations of a
NACA 632415 airfoil is considered.

2. NUMERICAL APPROACH
It is well known that wind turbines operate in a turbulent environments and it was shown in
[11] that the lift and drag forces computed with the solution of the Reynolds Averaged Navier
Stokes equations are sensitive to the free stream turbulence intensity. This aspect of the
problem will be considered subsequently and there computations are carried for laminar flow
as in the first part of the paper [12]. The unsteady incompressible Navier-Stokes equations
are described in ALE coordinates [13, 14]. The PISO algorithm is applied for the solution of
the coupled pressure velocity equations with the first order differencing UPWIND scheme
for the discretisation of the convection-diffusion terms. The temporal discretisation is
performed with the implicit θ - scheme. The fluid forces, computed from the solution of the
Navier Stokes equations, are used to determine the response of the structure with the
solution, in a time accurate sequence, of the airfoil dynamic equations. The airfoil
displacements are applied to the fluid mesh for the solution of the fluid equations and the
determination of the blade forces at the next iteration. The dynamic equations of the
oscillating airfoil, the coupling approach and the equations describing the moving mesh
technique are summarized in the following.

2.1. THE DYNAMIC EQUATIONS
It is assumed that the airfoil is an elastic body and the airfoil elasticity is described by a simple
two degrees of freedom model. The dynamic equations of the airfoil are defined from the
Lagrange equations. In the case of an airfoil in pitch oscillations (or torsion around the elastic
axis EO) and in flap-wise (oscillations in the vertical direction) as shown on Fig. 1, the non
linear equations that describe the elastic airfoil motion write as:

(1)m y C y S k y Fy y y    && & &&+ + + = −α α
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(2)

where m is the airfoil mass, α, y, , , and are the airfoil rotational and vertical
displacement, velocity and acceleration respectively, Fy is the vertical component of the
aerodynamic force, M, the torsion moment, a, the distance between the point of application
of Fy and the elastic axis EO, with rG the distance between the centre of gravity
and the elastic axis EO, kα and ky are the torsion and bending stiffness and Cy, Cα are defined
as Cα = 2Jαωαζα and Cy = 2mωyζy, with Jα inertia moment around the elastic axis EO, 
ζα and ζy, dampening coefficients and are the airfoil natural frequencies.
It is assumed here that the aerodynamic force acts at the aerodynamic centre located at a
quarter chords from the leading edge.

For the time integration of the dynamics equations, three algorithms are compared: a
linear scheme, the Newmark algorithm and the Crank Nicholson scheme. Expressed for the
solution of one degree of freedom equation:

(3)

these algorithms write as:
• the linear scheme [15],
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Figure 1 The airfoil scheme.



(4c)

• the Newmark algorithm

(5a)

(5b)
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(5d)

(5e)

• the Crank Nicholson method [16]
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where is the time step and β1 and β2, are constants of integration. The 3 algorithms are
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(7)

given by the relation:

(8)

where the constants A1 and A2 are determined from the initial conditions and

. It is shown on Fig. 2 that the solution obtained with the Crank 

Nicholson scheme coincides with the analytic solution. This algorithm is then used for the
solution of the equations (1) and (2) that describe the airfoil oscillations.

2.2. THE COUPLING METHOD
The coupling method is based on the explicit scheme of Euler where the position of
the computational domain at time tn+1 is determined with the relation:
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Figure 2  Comparison of the discretisation schemes.



where qn is the displacement of the structure at time tn, and are the velocity of the

airfoil at time tn and tn–1 respectively, is the time step and and are the coupling
scheme coefficients.

Explicit methods are first order accurate and they do not conserve energy at the moving
fluid – solid interface and it is well known that implicit algorithms are more suitable [13].
However, these techniques are more computationally expensive and heavy to implement and
to integrate in a commercial CFD code. Therefore they are not used in this study.

2.3. THE MOVING MESH TECHNIQUE
The moving mesh method is analogous to the meshing technique applied for the airfoil in
forced oscillation [12]. As previously, the airfoil is located in the centre of an O-H
computational domain and the meshing method is based on algebraic interpolations:

Given the cylindrical coordinates of the vertices in the 2D computational grid
at the time tn, the Cartesian coordinates and and the airfoil displacements
calculated with the solution of the dynamic equations, the displacement of the mesh is
performed as follow:

• The vertices of the circular sub-domain of radius R1 move at the airfoil
velocity:

(10a)

(10b)

(10c)

• For the vertices of the annular sub-domain delimited by the circles of radius
R1 and R2, the applied relations are:

(11a)

(11b)

(11c)

where , and NR12 is the number of

cells according to the radial direction, between R2 and R1.

• The vertices of the outer domain are stationary.
This meshing technique is implemented in a user subroutine called by the CFD code at

the beginning of each time step.
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α = +10° t = 0.00 s

(a)

α = −5.51° t = 0.04 s

(b)

α = +6.37°t = 0.12 s

(c)

α = −0.19°t = 0.36 s

(d)

α = −0.47°t = 0.92 s

(e)

α = −0.14°t = 1.60 s

(f)

Figure 3  Contours of the velocity magnitude in the neighbourhood of the NACA
0012 airfoil.



3. APPLICATION
3.1. NACA 0012 AIRFOIL IN PITCH OSCILLATIONS
The case of an airfoil in free oscillations as experimented by Tinar and Cetiner [17] is
considered. The model is a NACA 0012 airfoil with a chord length C = 0.12 m and a span of
0.50 m. Measurements have been performed for different Reynolds numbers and different
values of the initial angle of attack, the natural frequency ωn and the damping ratio ζ. A PIV
technique was applied to measure the airfoil acceleration. The velocity and position of the
airfoil were then determined by successive integrations. The obtained results were depicted
as a function of M/I, where M is the moment:

(12)&& &θ ω ζ θ ω θ+ ⋅ + ⋅ =2 2
n n

M
I
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Figure 4  Contours of the velocity magnitude around the pitch oscillating NACA
0012 in the whole computational domain.
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Our computations are applied to the test case corresponding to Re = 76 064, ωn = 57 Hz
and ζ = 0.05, with the initial angle of attack equal to 10°. The initial flow field is determined
by simulations that are carried out for an airfoil at a fixed 10° incidence until the time t =
0.60 s (corresponding to the dimensionless time t∗ = U∞ � t/c ≈ 48), when the time wise
variations of the force coefficients become periodic. The airfoil is then released in the fluid
and computations are performed in Fluid Structure Interaction.

3.1.1. Instantaneous velocity magnitude
For this airfoil, the static separation occurs around α = 10°. Therefore when the airfoil is at
a fixed incidence α = 10°, the flow is separated on the extrados (Fig. 3a). In the rest of the
domain, the flow-field is steady (Fig. 4a). As soon as the profile is free oscillating, some
vortices detach from the airfoil surface and are spread of in the wake of the airfoil (Fig. 3b
to 3d and 4b to 4d). This phenomenon persists even when the airfoil oscillations are low
(Figs. 3e and 4e). At the time t = 1.62 s from the beginning of the airfoil oscillations, the
stationary flow is nearly established (Figs. 3f and 4f).

3.1.2. Moment and force coefficients
The lift coefficient decreases quickly as soon as the profile is free oscillating, as far as
reaching a zero lift coefficient. This result is reflected in the Fig. 5 which shows the variation
of the torsion moment as a function of the angle of attack.

3.1.3. Airfoil oscillations
The time-wise variations of the airfoil position are depicted on Fig. 6. The curve show that
the airfoil oscillations are attenuated and that the position tends to a zero incidence. This
result was expected as the elastic axis is located at the aerodynamic centre. Moreover, the
obtained results are merged with the analytic solution expressed by the relation (7). This is
due to the high value of the airfoil natural frequency.

3.2. NACA 632415 IN FLUTTER
Simulations of the classical flutter are performed for a NACA 632415 airfoil similar to that
of Svacek and al [10]. The model has a chord length C = 0.30 m, a span of 0.50 m, with the
following elastic parameters:

• m = 8.6622 10−2 kg, Sα = –7.79673 10–4 kgm, Jα = 4.87291 10–4 kgm2,
• ky = 105.109 N/m, kα = 3.695582 Nm/rad, Cy = 1.05109 and Cα =

3.695582 10–3.
The elastic axis EO is localized at 40% from the leading edge and the centre of gravity G

is at 37% of the leading edge. Computations are started with initial displacements and zero
initial vibration velocity. The two following configurations are considered:

i. yinit = +0.050 m and αinit = 6° with U∞= 2 m/s, 26 m/s and 45 m/s.
ii. yinit = – 0.050 m and αinit = 12° with U∞ = 26 m/s.

where yinit and αinit are the initial airfoil positions and U∞ is the free stream velocity.
As previously, the initial flow-field is determined with computations carried out for a

fixed airfoil at the above initial positions. The airfoil is then released in the fluid and the
computations are performed in FSI. The obtained results are depicted according to the initial

position and the speed index, a dimensionless parameter defined as with

and , the natural frequency of the

airfoil. The aim was to verify if the flutter point is attained or not. With the applied values

ωα α α= K Jµ π ρ= ⋅ ⋅( )4 2m CU U C∗ = ⋅( )∞2 ωα ,

V U∗ ∗= µ
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of the airfoil elastic parameters, the free stream velocities U∞ = 2, 26 and 45 m/s
correspond to the speed indexes V∗ = 0.15, 1.99 and 3.45, respectively.

3.2.1. Results obtained with yinit = +0.050 m and αinit = 6°
The contours of velocity magnitudes obtained with the different values of U∞ are depicted
on Figs. 7 to 9, where Umax is the maximal velocity magnitude over the airfoil surface. When
U∞ = 2 m/s (the corresponding Reynolds number being Re = 4 × 104), it is found that the
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Figure 5  Variation of the moment with the pitch angle for the oscillating NACA
0012 airfoil.

Figure 6  Time wise variation of the angle of attack of the pitch oscillating NACA
0012 airfoil (t = 0s corresponds to the time at which the airfoil is released in the fluid).



vortex streets are more important in the near wake of the airfoil than with the higher free
stream velocities. In addition, when the airfoil is at rest, the ratio increases
slightly with U∞ . With U∞ =26 and 45 m/s, as soon as the airfoil is released in the fluid, the
ratio decreases as reaching the value 1.30 at the time t ≈ 1s. However, whenU Umax ∞

U Umax ∞
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t = 0.00 s Umax/U∞ = 1.41

α = + 6°-- y = + 5.00 10−2 m 

t = 0.03 s Umax/U∞ = 1.42

α = − 3.39°-- y = − 2.69 10−2 m 

t = 0.38 s Umax/U∞ = 2.53

α = 0.26°-- y = − 3.31 10−2 m 

t = 1.03 s Umax/U∞ = 2.10

α = − 0.26°-- y = + 1.31 10−2 m 

t = 1.38 s Umax/U∞ = 1.63

α = − 0.29°-- y = + 1.72 10−2 m 

t = 1.88 s Umax/U∞ = 1.42

α = + 0.20°-- y = + 1.17 10−2 m 

Figure 7  Contours of the velocity magnitude around the oscillating NACA 632415
airfoil with αinit = 6°, yinit = +5.0 10–2 m and V∗ = 0.15.
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t = 0.00 s Umax/U∞ = 1.59

α =  600°-- y = + 5.00 10−2 m 

t = 0.49 s Umax/U∞ = 1.35

α = + 0.02°-- y = + 1.28 10−2 m 

t = 1.03 s Umax/U∞ = 1.34

α = − 0.19°-- y = + 0.64 10−2 m 

t = 1.38 s Umax/U∞ = 1.33

α = − 0.23°-- y = + 1.30 10−2 m 

t = 1.63 s Umax/U∞ = 1.32

α = + 0.32 °-- y = − 1.86 10−2 m 

t = 2.23 s Umax/U∞ = 1.30

α = − 0.14°-- y = + 0.81 10−2 m 

Figure 8  Contours of the velocity magnitude around the oscillating NACA 632415
airfoil with α init = 6°, yinit = +5.0 10–2 m and V∗=1.99.



U∞  = 2 m/s, the ratio is more important and at the time t = 1 s, it is found that

The time-wise variations of the force components are depicted on Fig. 10. Higher values
of the force coefficients are found when U∞ = 2 m/s. As expected, the CFD results are

U Umax . .∞ = 2 10

U Umax ∞
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t = 0.00 s Umax/U∞ = 1.61

α =  600°-- y = + 5.00 10−2 m 

t = 0.05 s Umax/U∞ = 1.29

α = − 1.79°-- y = + 0.64 10−2 m 

t = 0.15 s Umax/U∞ = 1.41

α = + 2.87°-- y = − 2.07 10−2 m 

t = 0.51 s Umax/U∞ = 1.40

α = + 0.64°-- y = − 2.18 10−2 m 

t = 0.65 s Umax/U∞ = 1.36

α = − 0.17°-- y = + 2.44 10−2 m 

t = 0.82 s Umax/U∞ = 1.33

α = − 0.70°-- y = + 3.10 10−2 m 

Figure 9  Contours of the velocity magnitude around the oscillating NACA 632415
airfoil with αinit = 6°, yinit = +5.0 10–2 m and V∗ = 3.45.



sensitive to the free stream velocity value. However, it is found that the airfoil responses are
not influenced by the value of the fluid velocity inlet. The phenomenon of divergence is not
observed (Fig. 11). Then the flutter point is not reached. Moreover, the results have similar
behaviour to that of an analytic solution obtained with FY =0 and M = 0. This is due to the
airfoil elasticity parameters and dampening and to the low values of the speed index. In
addition, our computed airfoil displacements are different to those of Ref. [10]. The
discrepancies are attributed to different initial airfoil displacements.

3.2.2. Results obtained with yinit = –0.050 m, αinit = 12° and v∗ = 1.99
Due to higher initial angle of incidence, the flow around the fixed airfoil is unsteady and it
separates on the extrados; the ratio is more important. When the airfoil is free
vibrating, the flow stabilizes and reattaches at the airfoil surface whereas the airfoil tends
toward a position of balance with an incidence of 0°.

In comparison to the previous computations with yinit = +0.050 m, αinit = 6° and the same
speed index V∗ = 1.99, it is found that: (i) At the time t ≈ 1s from the beginning of the
oscillations, the ratio (Fig. 12). (ii) The computed force coefficients are
lower compared to the prior configuration with the same value of the free stream velocity
(Fig.13). (iii) The initial amplitudes of the airfoil pitch oscillations are higher; however, the
airfoil vibrations are rapidly damped. The vertical oscillations are virtually opposite (Fig. 14).

Other simulations whose results are presented in a companion paper have been performed
for an airfoil without dampening and with different value of the airfoil natural frequency. The
influence of the free-stream velocity on the airfoil oscillations is then more important.

U Umax .∞ = 1 30

U Umax ∞
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Figure 10  Time history of the lift and drag coefficients for the oscillating NACA
632415 airfoil with αinit = +6° and yinit = +5.0 10–2 m.
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4. CONCLUSION
Flow induced vibrations were investigated for two airfoils used on wind turbine blades. The
computational method is based on a Fluid Structure Interaction approach where the dynamic
blade response due to the fluid forces is determined in time accurate sequence. CFD
computations are performed for incompressible and low Reynolds number flows, using a
commercial CFD code. A straightforward meshing technique was implemented in a user
subroutine called by the CFD code at each time step.

Int. Jnl. of Multiphysics Volume 2 · Number 4 · 2008 401

0.05

0.00

0.0 0.5 1.0 1.5 2.0 2.5

y 
(m

)

−0.05

Time (s)

6

3

0

0.0 0.5 1.0 1.5 2.0

−3

−6

Time (s)

2.5

α 
(°

)

Figure 11  Evolutions of the oscillations of the NACA 632415 airfoil with αinit = +6° and
yinit = +5.0 10–2 m.



The method was successfully applied for the computation of the viscous laminar flows
around a free pitch oscillating airfoil and around an airfoil in combined pitch and vertical
oscillations (classic Flutter). As wind turbines operate in turbulent environment, further
computations will be performed with the resolution of the incompressible Reynolds averaged
Navier-Stokes equations.
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t = 0.00 s Umax/U∞ = 1.97

α = + 12.00°-- y = − 5.00 10−2 m 

t = 0.04 s Umax/U∞ = 1.60

α = − 10.70°-- y = + 0.78 10−2 m 

t = 0.38 s Umax/U∞ = 1.26

α = − 2.80°-- y = + 2.57 10−2 m 

t = 0.54 s Umax/U∞ = 1.23

α = − 2.19°-- y = + 3.38 10−2 m 

t = 0.74 s Umax/U∞ = 1.27

α = − 0.73°-- y = + 2.60 10−2 m 

t = 0.94 s Umax/U∞ = 1.30

α = + 0.11°-- y = + 0.94 10−2 m 

Figure 12  Contours of the velocity magnitude around the oscillating NACA 632415
airfoil with αinit = 12°, yinit = –5.0 10–2 m and V∗ = 1.99.



This method can easily be extended to 3D computational domain to study aeroelastic
stability of a parked wind turbine blade at high wind speeds. However, although the
numerical tools performance are more and more increasing, a FSI approach is hard to apply
for the aeroelasticity modelling of the entire wind turbine i.e. including the tower and the
generator. Then future challenges lies in developing the Reduced Order Modelling (ROM)
technique that is efficient to model larger systems. In particular, the Proper Orthogonal
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Figure 13  Time wise variations of the lift and drag coefficients for the NACA 632415
oscillating with αinit = 12° – yinit = –5.0 10–2 m and αinit = 6° – yinit = +5.0 10–2 m; V∗ = 1.99.



Decomposition (POD) technique, that performances have been confirmed in fluid
mechanics, has been successfully tested in FSI applications [18, 19].
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Figure 14  Time history of the displacements of the NACA 632415 oscillating with αinit
= +12° and yinit = –5.0 10-2 m and αinit = 6° – yinit = +5.0 10–2 m; V∗ = 1.99.
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